1-9 A-D E-G H-M N-P Q-S T-Z

EDTA

EDTA

SYNONYMS: EDTA; edta; Edta; EDDA; edda; Edda; ETTA; etta; Etta; ethylenediaminetetraacetic; Ethylenediaminetetraacetic; ethylene diamine tetraacetic; ethylenediamine tetraacetic; ETHYLENEDIAMINETETRAACETIC; ETHYLENE DIAMINE TETRAACETIC; ETHYLENEDIAMINE TETRAACETIC; ETHYLENEDİAMİNETETRAACETİC; etilen diamino asetik asit; acid molecule; Edta disodium; Disodium EDTA; Disodium ethylenediaminetetraacetic acid; 139-33-3; Ethylenediaminetetraacetic acid disodium salt solution; SCHEMBL33500 BDOYKFSQFYNPKF-UHFFFAOYSA-N; disodium ethylenediamine tetracetic acid; ethylenediaminetetraacetic acid disodium; disodium ethylene diaminetetraacetic acid; disodium ethylenediamine tetraacetic acid 139D333; Ethylenediaminetetraacetic acid disodium salt solution, 0.01 M; Ethylenediaminetetraacetic acid disodium salt solution, 0.02 M; Ethylenediaminetetraacetic acid disodium salt solution, 0.05 M Ethylenediaminetetraacetic acid disodium salt solution, 0.1 M; Ethylenediaminetetraacetic acid disodium salt solution, 2%, solution; Ethylenediaminetetraacetic acid disodium salt solution, for molecular biology, 0.5 M in H2O, DNase, RNase, NICKase and protease, none detected Acid; Edetic; Ethylenediaminetetraacetic; Acid, Ethylenedinitrilotetraacetic; Calcitetracemate, Disodium; Calcium Disodium Edetate; Calcium Disodium Versenate; Calcium Tetacine Chelaton 3; Chromium EDTA; Copper EDTA; Coprin; Dicobalt EDTA; Dinitrilotetraacetate, Disodium Ethylene; Dinitrilotetraacetate, Ethylene; Disodium Calcitetracemate Disodium EDTA; Disodium Ethylene Dinitrilotetraacetate; Disodium Versenate, Calcium; Distannous EDTA; Edathamil; Edetate Disodium Calcium; Edetate, Calcium Disodium; Edetates Edetic Acid; Edetic Acid, Calcium Salt; Edetic Acid, Calcium, Sodium Salt; Edetic Acid, Chromium Salt; Edetic Acid, Dipotassium Salt; Edetic Acid, Disodium Salt; Edetic Acid, Disodium Salt, Dihydrate Edetic Acid, Disodium, Magnesium Salt; Edetic Acid, Disodium, Monopotassium Salt; Edetic Acid, Magnesium Salt; Edetic Acid, Monopotassium Salt; Edetic Acid, Monosodium Salt Edetic Acid, Potassium Salt; Edetic Acid, Sodium Salt; EDTA; EDTA, Chromium; EDTA, Copper; EDTA, Dicobalt; EDTA, Disodium; EDTA, Distannous; EDTA, Gallium; EDTA, Magnesium Disodium EDTA, Potassium; EDTA, Stannous; Ethylene Dinitrilotetraacetate; Ethylene Dinitrilotetraacetate, Disodium; Ethylenediaminetetraacetic Acid Ethylenedinitrilotetraacetic Acid; Gallium EDTA; Magnesium Disodium EDTA; N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine); Potassium EDTA; Stannous EDTA; Tetacine, Calcium; Tetracemate; Versenate; Versenate, Calcium Disodium; Versene; Etilendiamin tetraasetik asit; etilendiamintetrasetikasit; etilen diamine asetik asit; EDTA; tetraasetik asit; tetraasetikasit; etilendiamin;edetat;1,2-Bis (N,N-dicarboxymethylamino)-ethane;3,6-Diazaoctanedioic acid, 3,6-bis(carboxymethyl)-;62: PN: US20050026181 PAGE: 33 claimed protein;Acetic acid, (ethylenedinitrilo)tetra-;Acetic acid, 2,2',2'',2'''-(1,2-ethanediyldinitrilo)tetrakis-;Acide edetique;acido edetico;Acroma DH 700;AETHYLENDIAMIN-TETRAESSIGSAEURE;Celon A;Celon ATH;Cheelox;Chelest 3A;Chemcolox 340;Clewat TAA;Clewat TTA;Complexon II;Dissolvine E;Dissolvine Z;DOHTITE 4H, EDTA ACID;Edathamil;EDETA B;edetic acid;Edetinsaure;EDTA;EDTA (chelating agent);EDTA ACID FORM;Endrate;ETHYLENE DINITRILO TETRAACETIC ACID;Ethylenediamine Tetra-Acetic Acid;Ethylenediamine-N,N,N',N'-tetraacetic acid;Ethylenediaminetetraacetic acid;ETHYLENEDIAMINETETRAACETIC ACID (EDTA);ETHYLENEDIAMINETETRAACETIC ACID DISODIUM SALT;Ethylenediaminetetracetic acid;ETHYLENEDINITRILOTETRAACETIC ACID;Ethylene-N,N'-biscarboxymethyl-N,N'-diglycine;Gluma Cleanser;GLYCINE, N,N'-1,2-ETHANEDIYLBIS(N-(CARBOXYMETHYL));Glycine, N,N'-1,2-ethanediylbis[N-(carboxymethyl)-;Glycine, N,N'-1,2-ethanediylbis[N-(carboxymethyl)-;Glycine, N,N'-1,2-ethanediylbis[N-(carboxymethyl)-;Glycine,N,N'-1,2-ethanediylbis[N-(carboxymethyl)-,;Havidote;ICRF 185;Metaquest A;N,N'-1,2-Ethanediylbis[N-(carboxymethyl)glycine];N,N'-1,2-Ethanediyl-bis-N-(carboxymethyl)glycine;Nervanaid B acid;NSC 97243;NSC 97404;Nullapon B acid;Nullapon BF acid;Perma Kleer 50 acid;Quastal Special;Sequestrene AA;Sequestrene K 4;Sequestric acid;Sequestrol;Techrun DO;Titriplex;Titriplex II;Trilon BS;Trilon BW;Versene;WS;WS (chelating agent);YD 30;Zonon AO

 

 

EDTA Nedir?
EDTA bileşiği Etilendiamin tetraasetik asit'in kısaltmasidir. EDTA polyamino karboksilik asid bileşiğidir. Genel formülü ise [CH2N(CH2COOH)2]2 şeklindedir.Yapısal formülü için;http://upload.wikimedia.org/wikipedia/commons/thumb/8/85/Ethylenediaminetetraacetic.png/200px-Ethylenediaminetetraacetic.png EDTA'nın Kimyasal ÖzellikleriCAS No: 60-00-4 Molekül Formülü: C10H16N2O8 Molekül Ağırlığı: 292.24 g.mol-1 Yoğunluğu: 0,86 g/cm3 Erime noktası: 240 °C Asidite; pK1=0.0 (CO2H) (µ=1.0) pK2=1.5 (CO2H) (µ=0.1) pK3=2.00 (CO2H) (µ=0.1) pK4=2.69 (CO2H) (µ=0.1) pK5=6.13 (NH+) (µ=0.1) pK6=10.37 (NH+) (µ=0.1) EDTA'nın Keşfi EDTA ilk olarak Ferdinand Munz tarafından tanımlanmıştır. Munz, EDTA'nın keşfini etilendiamin ve klorasetik asit çözeltilerinden elde etmiştir. H2NCH2CH2NH2 + 4 CH2O + 4 NaCN + 4 H2O › (NaO2CCH2)2NCH2CH2N(CH2CO2Na)2 + 4 NH3; (NaO2CCH2)2NCH2CH2N(CH2CO2Na)2 + 4 HCl › (HO2CCH2)2NCH2CH2N(CH2CO2H)2 + 4 NaClPoliamino karboksilik asid grubundan olan EDTA'nın kimyasal yapısına bakıldığında 2 amino 4 karboksil ligandı vardır. EDTA metal iyonlarına karşı yüksek afinite gösterir. [Fe(H2O)6]3+ + H4EDTA {\displaystyle \rightleftharpoons } {\displaystyle \rightleftharpoons } [Fe(EDTA)]-+ 6 H2O + 4 H+ (Keq = 1025.1) EDTA'nın Laboratuvarda Kullanımı EDTA laboratuvarda metal iyonlarını tutmak için kullanılır. Biyokimya ve moleküler biyoloji iyon tüketici olarak enzimlere karşı kullanılır. Analitik kimya da kompleksometrik titrasyon, Su sertliği maskeleyici ajanlar analizelerinde kullanılır. Kaynakça 1 ^ Harris, D.C. "Quantitative Chemical Analysis", 7th ed., W. H. Freeman and Compagny, New York, 2007 2 ^ F. Munz "Polyamino carboxylic acids to I. G. Farbenindustrie, DE 718 981, 1935; US 2 130 505, 1938. 3 ^ Synthesis of EDTA 4 ^ a b c J. Roger Hart "Ethylenediaminetetraacetic Acid and Related Chelating Agents" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. 5 ^ Kirchner, S. Barium (Ethylenediaminetetracetato) Cobalt(III) 4-Hydrate" Inorganic Syntheses, 1957, Volume 5, pages 186-188. 6 ^ Edta - Motm 7 ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5. 8 ^ Furia T (1964). "EDTA in Foods - A technical review". Food Technology 18 (12): 1874-1882. 9 ^ a b c Lanigan RS and Yamarik TA (2002). "Final report on the safety assessment of EDTA, calcium disodium EDTA, diammonium EDTA, dipotassium EDTA, disodium EDTA, TEA-EDTA, tetrasodium EDTA, tripotassium EDTA, trisodium EDTA, HEDTA, and trisodium HEDTA". Int J Toxicol. 21 Suppl 2: 95-142. http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=12396676&dopt=AbstractPlus. Retrieved 2008-01-28. 10 ^ US Food and Drug Administration: Center for Food Safety and Applied Nutrition Questions and Answers on the Occurrence of Benzene in Soft Drinks and Other Beverages 11 ^ Ruth DeBusk et al. (2002). "Ethylenediaminetetraacetic acid (EDTA)". http://www.umm.edu/altmed/articles/ethylenediaminetetraacetic-acid-000302.htm. Retrieved 2007-07-25. 12 ^ "Home > Medical Reference > Complementary Medicine > EDTA overview". University of Maryland Medical Center. http://www.umm.edu/altmed/articles/ethylenediaminetetraacetic-acid-000302.htm. Retrieved 16 December 2009. 13 ^ Loren, Karl (1996). "I/V Chelation Using EDTA Life Flow One The Solution For Heart Disease". The Thinking Person's Guide to Perfect Health. Vibrant Life. http://www.oralchelation.net/data/EDTA/data14e.htm. Retrieved 16 December 2009. 14 ^ See "les conservateurs en opthalmologie" Doctors Patrice Vo Tan & Yves lachkar, Librarie Médicale Théa. 15 ^ Green, Saul; Wallace Sampson (December 14, 2002). "EDTA Chelation Therapy for Atherosclerosis And Degenerative Diseases: Implausibility and Paradoxical Oxidant Effects". Quackwatch. http://www.quackwatch.org/01QuackeryRelatedTopics/chelationimp.html. Retrieved 16 December 2009. 16 ^ http://www.clinicaltrials.gov/ct/show/NCT00044213?order=2 17 ^ Margolock, David (July 26, 1995). "F.B.I. Disputes Simpson Defense on Tainted Blood". The New York Times: pp. A12. http://query.nytimes.com/gst/fullpage.html?sec=health&res=990CE4DD1F3DF935A15754C0A963958260. Retrieved 16 December 2009. 18 ^ Zhiwen Yuan, Jeanne M. VanBriesen "The Formation of Intermediates in EDTA and NTA Biodegradation" Environmental Engineering Science 2006, volume 23, pp. 533-544. doi:10.1089/ees.2006.23.533 19 ^ a b Robin L. Sheppard, and Jack Henion (1997). "Determining EDTA in Blood" ([dead link] - Scholar search). Analytical Chemistry 69: 477A-480A. http://pubs.acs.org/hotartcl/ac/97/aug/det.html. Retrieved 2007-07-25. 20 ^ S. Loyaux-Lawniczak, J. Douch, and P. Behra (1999). "Optimisation of the analytical detection of EDTA by HPLC in natural waters". Fresenius' J. Anal. Chem. 364 (8): 727-731. doi:10.1007/s002160051422. http://cat.inist.fr/?aModele=afficheN&cpsidt=1898737. Retrieved 2007-07-25. 21 ^ Carolina E. Cagnassoa, Laura B. López, Viviana G. Rodríguez and Mirta E. Valencia (May 2006). "Development and validation of a method for the determination of EDTA in non-alcoholic drinks by HPLC". Journal of Food Composition and Analysis 20 (3-4): 248. doi:10.1016/j.jfca.2006.05.008 22-Ege üniversitesi Deri müh. bölümü.(G.E)

 

EDTA (ETHYLENEDİAMİNETETRAACETİC ACİD) HOLLANDA / 25 KG 2,5 - 2,6 EURO / KG Tel: +90 212 675 20 64 Açıklama EDTA (Etilen diamin tetra asetik asit)Standart Verileri CAS numarası: 60-00-4 PubChem: 6049 ChemSpider: 5826 UNII: 9G34HU7RV0 EC numarası: 200-449-4 UN numarası: 3077 DrugBank: DB00974 : D00052 MeSH: Edetic Asit Chebi: 42191 CHEMBL858 RTECS numarası: AH4025000 ATC kodu: V03AB03 Beilstein Referans: 1716295 Gmelin Referans: 144943 Moleküler formül: C10H16N2O8 Molar kütle: 292,24 g mol-1 Görünüşü: Renksiz kristaller Yoğunluk: 860 mg ml-1 (20 ° C) Log P: -0,836 Asit (pKa): 1,782 Bazisite (PKB): 12,215 Diğer isimleri : Etilendiamin tetra asetik asit Genel Bilgi Molekül formülü: C10H16N2O8 açık formülü 2[CH2N(CH2CO2H)2] olan rilon beyaz tuz yapıdaki EDTA bir poliamino karboksilik asit bileşiğidir.En önemli özelliği hidrolize karşı direnç göstermesi ile sıcaklıktan çok fazla etkilenmeyen Zn Ca,Cu, Cd, Mg, Pb, Fe,HgHHhhhh v.b metal iyonları ile geniş bir pH aralığında suda çözünerek kompleksler oluşturabilme kabiliyetleridir. Bu çeşit kompleksler özellikle alkali ortama ve yüksek sıcaklıkara karşı stabildir. Ortasina aldigi metal iyonunun dört bir tarafini cevreleyebilen bir liganttır.Su ve polar solventlerde çözünebilir. 150-200 oC'de dekompze olur, yavaş yavaş kristalizasyon suyu verir ve rengini kaybeder. EDTA metal iyonlarına karşı yüksek afinite gösterir. Üretim ve Reaksiyonları EDTA etilendiamin ve klorasetik asit çözeltilerinden elde edilebilmektedir. H2NCH2CH2NH2 + 4 CH2O + 4 NaCN + 4 H2O ? (NaO2CCH2)2NCH2CH2N(CH2CO2Na)2 + 4 NH3 (NaO2CCH2)2NCH2CH2N(CH2CO2Na)2 + 4 HCl ? (HO2CCH2)2NCH2CH2N(CH2CO2H)2 + 4 NaCl Poliamino karboksilik asit grubudan olan EDTA'nın kimyasal yapısına bakıldığında 2 amino 4 karboksil ligandı vardır. 3[Fe(H2O)6]+ + H4EDTA [Fe(EDTA)]- <---> + 6 H2O + 4 H+ (Keq = 1025.1) Kullanım Alanları Kimya Kimya laboratuvarlarında EDTA metal iyonlarını tutmak için kullanılır.EDTA çözeltileriyle oluşturulan maddeler bir çok oluşumda bileşen,yardımcı ürün olarak da kullanımı vardır.Ayrıca su sertliğinde maskeleyici ajan analizlerinde olarak görev almaktadır. EDTA tuzu, polifosfatları stabilize etmek için ve kireç sabunlarında topaklaşmayı önlemek için alkali yağ gidericilerin bütün çeşitlerine katılabilmektedir. Biyokimya Biyokimya ve moleküler biyoloji iyon tüketici olarak enzimlere karşı kullanılır. Temizleyici Bu sektörde EDTA'nın çözünürlüğü ve hidrolize karşı direnci özelliğinden faydanılmaktadır.Yağ giderici olarakta kullanımı yaygındır. Nötral ve alkali pas giderme konusunda yardımcı olarak kullanılmaktadır. Su Su taşıyan kalıntıların, temizlenmiş yüzeye yerleşmesini engeller.Emülsiyonlarda su sertliği ve polivalent metal iyonlarının etkisini en aza indirmek için katılabilir.Proseslerde pul oluşumunu önlerler.

 


Sabun ve Deterjan
EDTA kalıp sabuna, tuvalet sabunlarına, ve traş sabunlarına renk kaybı ve küf (ekşime, kokma) oluşumunu önlemek amacıyla eklenebilir. EDTA toz: Kalıp sabuna: % 0,1-0,2; sıvı sabuna: yaklaşık % 1 oranında kullanımı uygundur. Deterjanlarda EDTA çeşitlerinin en önemli fonksyonu;perborat ve perkarbonat ağartmasını kararlı yapmaktır. Dekompozisyonu katalizleyen ağır metallerin eser miktarlarının engellemek için % 0,1-0,5 oranlarına kadar gereklidir.

 

 

Kauçuk
Kauçuğun polimerizasyonunda kullanılan katalizör sistemlerinde demir iyonlarını bağlamak için kullanılmaktadır.EDTA edta formul Kullanım alanı çok yaygın olan EDTA toz halde beyaz renkte bir maddedir. İçeriğinde azot, hidroksit ve oksijen iyonları vardır. Formülü C10H16N2O8 tür. Su ve polar solventlerde çözünür. 150-200 °C de dekompze olur, yavaş yavaş kristalizasyon suyu verir ve rengini kaybeder. Konserve balık, mayonez, margarin, salata sosları, işlenmiş meyve ve sebze,ve meyve suyu ve diğer içecekler gibi çeşitli gıdaların üretiminde kullanılır. Gıdaların üretiminde kullanılan ve modern gıda üretim teknolojilerinin bir parçası olan makinalardan kaynaklanan metal kontaminasyonunu elimine ederek, ileri safhalarda söz konusu bulaşmaların yol açacağı tad (acılaşma, küf vs.) ve renk kayıplarını önlenmesinde etkin olarak kullanılır. EDTA nın teknik (spesifik ) özellikleri aşağıdaki tabloda verilmiştir.

 

 


EDTA Nerelerde Kullanılır?
Konserve balık, mayonez, margarin, salata sosları, işlenmiş meyve ve sebze,ve meyve suyu ve diğer içecekler gibi çeşitli gıdaların üretiminde kullanılır. Gıdaların üretiminde kullanılan ve modern gıda üretim teknolojilerinin bir parçası olan makinalardan kaynaklanan metal kontaminasyonunu elimine ederek, ileri safhalarda söz konusu bulaşmaların yol açacağı tad (acılaşma, küf vs.) ve renk kayıplarını önlenmesinde etkin olarak kullanılır.

 

 

EDTA Özellikleri
EDTA (C10H16N2O8) Kimyasal Adı EDTA, H4EDTA CAS No 60-00-4 Kimyasal Formülü C10H16N2O8 Molekül Ağırlığı 292.24 g/mol Renk / Form Beyaz, Toz Yoğunluk 860 g/cm³ Ambalaj Edtanın 25kg lık torbalarda satışını yapmaktayız. EDTA Kullanım Alanları Edta metal, gıda, tıp, temizlik sektörü başta olmak üzere değişik alanlarda kullanılmaktadır.
• Metal iyonların ayrıştırılmasında E.D.T.A. kullanılır.
• Gıda sektöründe koruyucu olarak E.D.T.A. kullanılır.
• Su Yumuşatma da E.D.T.A. kullanılır.
• Tıp da kurşun zehirlenmelerinin tedavisinde E.D.T.A. kullanılır.
• Diş hekimliğinde E.D.T.A. kullanılır.
• Kan analizinde E.D.T.A. kullanılır.
• Şampuanlar, deterjan vb ürünlerde E.D.T.A. kullanılır.
• Sabun üretilmesinde E.D.T.A. kullanılır. 
• Elektroliz işleminde E.D.T.A. kullanılır. 
• Yağ giderme banyolarında E.D.T.A. kullanılır. 
• Fotoğrafçılık sektöründe E.D.T.A. kullanılır. 
• Kauçuk sektöründe E.D.T.A. kullanılır.

 

 

EDTA Nedir?
EDTA Molekül Formülü; C10H16N2O8EDTA Molar Kütlesi; 292,24 g/mol EDTA Kimyasal Adı; Etilendiamin tetra asetik asit EDTA Cas Numarası; 60-00-4 EDTA, poliamino karboksilik asit türlerindendir. EDTA yapısında birden fazla -COOH grubu bağlıdır. Bundan dolayı polikarboksilik asit grubundadır. Bunun yanında EDTA yapısında -NH2 bağlı olduğundan amino ekini alırlar. Dolayısıyla EDTA poliamino karboksilik asit olarak gruplandırılır. EDTA, etilendiamin tetraasetik asit' in kısaltmasıdır. EDTA renksiz ve kristalimsi bir katıdır. EDTA, moleküler biyoloji sınıfı olarak belirlenmiştir. Ve moleküler biyoloji uygulamaları için gayet uygundur. EDTA gibi karboksilik asitler, hem EDTA Fiziksel ve Kimyasal Özellikleri Nelerdir? EDTA erime noktası 237 °C dir. EDTA kaynama noktası 100 °C dir. EDTA yoğunluğu 0.86 g/cm3 tür. EDTA Saklama sıcaklığı 2-8 °C dir. EDTA çözünürlüğü, 3M NaOH çözeltisinde 100 mg/mlt çözünür. Fakat suda 0.5 g/ L (25 °C) çözünür. Yani baktığımızda suda hafif çözünür. EDTA form olarak kristal yapıdadır. EDTA görünüm olarak neredeyse beyaz renktedir. EDTA kararlı bir kimyasaldır. Bakır, bakır alaşımları, nikel, alüminyum, güçlü oksitleyici maddeler ve güçlü bazlarda çözünmez. EDTA Üretimi Nasıl Yapılır? EDTA günümüzde endüstriyel amaçlı olarak etilendiamin, formaldehit ve HCN veya NaCN gibi siyanür içeren bileşiklerle reaksiyona sokulması sonucunda sentezlenmiştir. Öncelikle EDTA ‘nın sodyum tuzu oluşur. Daha sonra asitlendirilebilir. EDTA tuzunun asitlik kazandırılası için Hidroklorik Asit veya Sülfürik Asit kullanılır. EDTA üretiminde tek ve iki aşamalı sentez kullanılır. Bunlardan 2 aşamalı olan üretim sürecinde, çok yüksek saflıkta EDTA üretimi sağlanır. EDTA (Etilendiamin Tetraasetik Asit) üretim sürecinde, tek aşamalı üretim surecinde ayrıştırma gerekli değildir. Bundan dolayı daha az ekipman ve daha kurulum maliyeti gereklidir. EDTA (Etilendiamin Tetraasetik Asit) üretim sürecinde iki aşamalı olan da ise EDTA tuzu NTA tuzu ile kontamine olmuştur. EDTA İnsan Sağlığına Etkileri Nasıldır? EDTA cilde temas etmesi durumunda ciddi derecede göz tahrişine neden olur? EDTA nın ellere temas etmesi durumunda da tahrişlere neden olur. En ciddi problemlerden bur tanesi de EDTA' nın göze temas etmesidir. Vücudumuzun herhangi bir yerine EDTA temas etmesi durumunda bir kaç dakika su ile yıkama yapılması gerekmektedir. Bunun sonucunda netice alınamaz ise tıbbi destek alınmalıdır.
EDTA Nasıl Depolanır?

 

EDTA pH 8.5 da 0.5 M stok solüsyonu olarak 4 °C aylarca stabil olarak muhafaza edilebilir. EDTA cam şişeler yerine polietilen yani plastik kaplarda muhafaza edilir. Bunun nedeni Cam şişe içerisindeki EDTA zamanla şişe yapısında bulunan metal iyonları ile reaksiyona girebilir. Fakat plastik kaplarda metal iyonları olmadığından EDTA plastik kaplarda daha uzun süre muhafaza edilebilir. EDTA Hangi Alanlarda Kullanılır? EDTA (Etilendiamin Tetraasetik Asit) potasyum ve sodyum tuzları, kanın hücresel bileşenlerinde hasar meydana getirmediği için, rutin olarak yapılan Hematoloji (kan bilimi) tayinlerinde yaygın olarak kullanılır. EDTA çoğu metal iyonuyla kararlı kompleksler oluşturması nedeniyle, kurşun ve ağır metal zehirlenmesinde çiftlik hayvanlarının tedavisinde kullanılır. EDTA, evde kullanılan deterjanlar, kozmetik ürünleri, ilaçlar ve gıda maddelerinin bir bileşeni olarak kullanılır. EDTA ‘ nın ana fonksiyonu eser metallerin kompleksleştirilmesidir. EDTA, deterjan sektöründe, temizlemesi yapılacak olan uçak, konteynırlar borular ve nozullarda, sedimantasyona ve kaplamaya neden olabilecek ağır metallerin çökelmesini önler. EDTA, Alkali yağ giderme filolarında fosfatlar dengelenir ve kalsiyum sabununun topaklaşma yapması engellenir. EDTA nın kullanılması ile temizleme etkisi yoğunlaşır ve metal yüzeylerin zedelenmesi engellenir. EDTA, Süt ve içecek üretiminde kullanılmaktadır. EDTA, Fotokimyasallar endüstrisinde metalik gümüşün oksidasyonu ve sabitlenmesi (kompleks hale getirip gümüş iyonların uzaklaştırılması) kombinasyonundaki işlemler ağartma öncesinde uygulanır. EDTA tekstil endüstrisinde selülöz moleküllerinin çapraz bağlanması (bakımı kolay kumaşları üretmek için) aynı zamanda oksidatif ağartma işlemlerine destek vermek için ve liflerde meydana gelebilecek katalitik hasarları önlemek amacıyla tekstil kaplamalarında kullanılır. EDTA kağıt sektöründe, selülöz elyaflarından kalan lignini çıkarmak için ağartıcı ajanlar kullanılır. Ve parlaklık artırılır. Aynı zamanda kağıt değirmenleri de kullanılır. Ağartma maddesi olan Hidrojen Peroksit kullanılırsa manganez gibi ağır metaller peroksidi parçalayabilir. EDTA kullanılmasının nedeni şelatlı bir yapı oluşturmaktır. Çünkü EDTA burada manganez gibi kağıda yapışmaz bu nedenle EDTA nın tamamı atık olarak kanalizasyona gider. EDTA metal kaplama sektöründe de kullanılmaktadır. Burada EDTA baskılı devre kartlarının üretimi için kullanılır. EDTA, bakır kompleks bileşiklerinin katalitik redüksiyon yöntemi ile tahta levha üzerine çöktürülmesi neticesinde bakırın kaplanması için kullanılır. EDTA, su arıtma sistemlerinde kalsiyum ve magnezyum taşlarının oluşumunu önlemek amacıyla kullanılır. EDTA, su arıtma sistemlerinde sistemi besleme sularının kazanlarına, iç kısımlardaki tortuları önlemek ve temizlemek için katkı maddesi olarak kullanılır. EDTA emülsiyon polimerizasyonu ile üretilen Styrene Bütadien Elastomer üretiminde kullanılır. EDTA nın buradaki kullanım amacı, üretimdeki başlatıcı sistemde bulunan Fe(II)/Fe(III) iyonları için EDTA, sekestrasyon ajanı olarak kullanılır. EDTA yağ üretin platformlarında iyi bir temizleme maddesi olarak kullanılır. EDTA nın buradaki kullanımı belirli dozajlarda sürekli olarak uygulama ile kullanılır. EDTA kömür santralleri ve atık yakma tesislerinde kükürt dumanını gidermek için kullanılır. EDTA Fiyatlarına Etki Eden Faktörler Nelerdir? EDTA fiyatına etki eden en büyük faktör, üretiminde kullanılan hammadde girdilerinin fiyatlarından kaynaklanmaktadır. EDTA Fiyatı, üretilen EDTA nın yoğunluğuna ve spesifikasyon bilgilerine de bağlıdır. EDTA fiyatı konsantrasyon arttıkça artmaktadır. Çünkü üretim maliyeti yüksektir. EDTA fiyatı, EDTA nın kullanım alanının genişlemesine bağlı olarak artmaktadır. EDTA fiyatı, yeni bir büyük üreticinin, EDTA üretimi yapmaya başlaması ile geçici olarak azalır ama kısa zaman içerisinde uygun düzeye gelecektir. EDTA fiyatları geçmişten günümüze artan bir grafik ile yükselmektedir. Hazırlayan; O Kimya Görünümü : Beyaz kristal toz halinde Kimyasal Adı : Ethylenediaminetetraacetic Acid Kimyasal Formülü : C10H16N2O8 Ambalaj Şekli : 25 Kg. çuvallarda Tanımı ve Kullanım Alanları :

Zayıf bir organik asit gibi davranır. Karboksilik asitler, bunları kabul edecek bir baz varsa hidrojen iyonları bağışlarlar. Bu şekilde, hem organik (örneğin, aminler) hem de inorganik bazlarla reaksiyona girerler. "Nötrleştirmeler" olarak adlandırılan bazlarla olan reaksiyonları, önemli miktarlarda ısının eşlik etmesine eşlik eder. Bir asit ile bir baz arasındaki nötralizasyon su artı bir tuz oluşturur. Altı veya daha az karbon atomuna sahip karboksilik asitler suda serbestçe veya orta derecede çözünür; altıdan fazla karbona sahip olanlar suda az çözünürler. Çözünür karboksilik asit, hidrojen iyonları elde etmek için bir miktar sudan ayrışır. Birçok çözülmeyen karboksilik asit, kimyasal bir baz içeren sulu solüsyonlarla hızlı reaksiyona girer ve nötrleştirme çözünür bir tuz oluşturduğu için çözünür. Sulu çözeltideki karboksilik asitler ve sıvı veya erimiş karboksilik asitler aktif metallerle reaksiyona girerek gazlı hidrojen ve bir metal tuzu oluşturabilirler. Karboksilik asitler, diğer asitler gibi siyanür tuzlarıyla tepkimeye girerek gaz halindeki hidrojen siyanür oluştururlar. Reaksiyon kuru, katı karboksilik asitler için daha yavaştır. Çözünmeyen karboksilik asitler gaz halindeki hidrojen siyanürün serbest bırakılmasına neden olmak için siyanür çözeltileri ile reaksiyona girer. Yanıcı ve / veya toksik gazlar ve ısı, karboksilik asitlerin diazo bileşikleri, ditiyokarbamatlar, izosiyanatlar, merkaptanlar, nitritler ve sülfitler ile tepkimesiyle üretilir. Karboksilik asitler, özellikle sulu solüsyondaki sülfitler, nitritler, tiosülfatlar (H2S ve SO3 vermek üzere), dithionitler (SO2) ile yanıcı ve / veya toksik gazlar ve ısı üretmek için reaksiyona girer. Karbonatlar ve bikarbonatlar ile reaksiyonları zararsız bir gaz (karbondioksit) üretir ancak yine de ısı verir. Diğer organik bileşikler gibi, karboksilik asitler güçlü oksitleyici ajanlarla oksitlenebilir ve güçlü indirgeyici ajanlarla indirgenebilir. Bu reaksiyonlar ısı üretir. Çok çeşitli ürünler mümkündür. Diğer asitler gibi, karboksilik asitler polimerizasyon reaksiyonlarını başlatabilir; Diğer asitlerde olduğu gibi, genellikle kimyasal reaksiyonları katalizler (hızını arttırırlar).

Kullanım Alanları

Koordinasyon komplekslerinde moleküllerin yer değiştirmesinde o kadar iyi olduğu için EDTA, az miktarda istenmeyen metallerin reaksiyona girmesini ve ürünler üzerinde zararlı etkileri olmasını önlemek için kullanılabilir. EDTA havadaki moleküllere karşı kozmetik ürünün direncini arttırmaya hizmet eder. Benzer şekilde, kişisel bakım ve cilt bakım ürünlerinde, EDTA serbest metal iyonlarına bağlanır ve bir arındırıcı ajan ve persistan olarak işlev görür. Şampuan ve sabun içerisindeki diğer bileşenlerin daha etkili bir şekilde temizlenmesi için çalışabilmesi için musluk suyundaki "sertliği" (veya metal katyonlarının varlığını) temel olarak azaltır. EDTA, diğer aktif maddelerin daha iyi temizleyebilmesi için, çamaşır deterjanlarında kendisiyle temas eden suyu yumuşatmak için kullanılır. Tekstilde, EDTA, boyalı kumaşların renksiz renksiz metal iyonlarını uzaklaştırarak renk değişikliğini önler ve aynı zamanda yüksek sıcaklıklarda kullanılması gereken endüstriyel ekipmanın (yani broylerler) kalıntılarından arındırır. Genel olarak EDTA, bir metalin reaktivitesini düşürür ve varlığından kaynaklanabilecek istenmeyen etkileri önler. EDTA tuz biçiminde, büyük olasılıkla disodyum veya kalsiyum disodyum EDTA içinde kullanılır. Türkiye Klinikleri Endodonti - Özel Konular Türkiye Klinikleri Endodonti - Özel Konular Yayın Kimliği Yayın Arşivi Yayın Hakları Devir Formu Yayın Gönder Abone Satış Creative Commons Lisansı Bu eser Creative Commons Atıf-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Endodontide İrrigasyon Özel Sayısı .: DERLEME Etilen Diamin Tetra Asetik Asit (EDTA) Ethylene Diamine Tetra Acetic Acid (EDTA) Mügem GÜRELa, Bağdagül HELVACIOĞLU KIVANÇa aEndodonti AD, Gazi Üniversitesi Diş Hekimliği Fakültesi, Ankara Turkiye Klinikleri J Endod-Special Topics. 2015;1(2):8-14 Makale Dili: TR

 


ÖZET
Etilen diamin tetra asetik asit (EDTA) etkili bir şelasyon ajanı ve lubrikanttır. EDTA'nın kimyasal olarak kök kanal dentinini yumuşattığı, smear tabakasını kaldırdığı ve dentin geçirgenliğini arttırdığı düşünülmektedir. EDTA dentindeki kalsiyum iyonuna bağlanarak suda çözünebilir kalsiyum şelatları meydana getirir. Smear tabakasının inorganik ve organik komponentlerinin etkin bir şekilde uzaklaştırılması için EDTA ve NaOCl?nin birlikte kullanımı önerilmektedir. Bu makalede EDTA'nın endodontik tedavide kullanım alanı ve etkinliği tartışılmaktadır. Bu derlemenin amacı, endodontide EDTA ile yapılan çalışmaları incelemektir. Anahtar Kelimeler: EDTA; kök kanal tedavisi; şelasyon ajanları ABSTRACT Ethylene diamine tetra acetic acid (EDTA) is an effective chelating agent and lubricant. EDTA was thought to chemically soften the root canal dentin and dissolve the smear layer and increase dentin permeability. EDTA reacts with the calcium ions in dentin and forms soluble calcium chelates. For removing inorganic and organic material of smear layer, combined using EDTA and NaOCl is recommended. In this article, the usage and efficacy of EDTA in endodontic therapy are discussed. The aim of this review is s to analyze the relevant literature on EDTA. Keywords: EDTA; root canal theraphy; chelating agents Sodyum Edta(Toz) 25Kg. Edta(Toz) 25Kg. - Thumbnail Sodyum Edta(Toz) 25Kg. - Thumbnail Sodyum Edta(Toz) 25Kg. Ürün Kodu : 35.06.293 79,77 TL KDV dahil 1 Adet HEMEN AL SEPETE EKLE Paylaş: Tavsiye Et Fiyat Alarmı ÜRÜN BİLGİLERİÖDEME SEÇENEKLERİ YORUMLAR (0) RESİMLER Sodyum Edta (Toz) 25 Kg. Bazik RO Yıkama Kimyasalı : Ters Ozmoz (R.O)cihazlarının düzenli olarak temizliğinin yapılması çok önemlidir. Zaman içinde su bulunan partüküller membran yüzeylerindeki saf su akış debisini ve iletkenliğini olumsuz yönde etkileyen katmanlar oluştururlar. Bu birikimler membranlardan temizlenmezse, kalıcı fiziksel ve kimyasal hasarlar meydana getirerek membranların ömrünü kısaltabilir. İyi su akışında azalma, iyi su iletkenliğindeki artış veya cihazda oluşan basınç kaybındaki artış, temizlik gereğinin bir göstergesidir. Organik olan kirlerin (yağ ve protein gibi) temizlemek için bazik (alkalin) temizleyiciler kullanılması daha etili lmaktadır. pH : Bir çözeltinin asitlik veya bazlık derecesini gösteren ölçü birimidir. 0 - 7 arası asidik, 7 nötr, 7 - 14 arası rakamlar ise karışımın bazik (alkali) olduğunu gösterir. 0'dan 7'ye doğru gidildikçe çözeltinin asitlik özelliği düşer. 7'den 14'e doğru gidildikçe ise çözeltinin bazik olma özelliği kuvvetlenir. Bazı pH Değerleri Klor Bazlı Ağartıcı pH: 11-13 Sodyum Karbonat pH: 11 Boraks pH: 10 Sodyum bikarbonat pH: 8-9 Sirke pH : 3 Limon Suyu pH : 3 gibi... E.D.T.A. 4 Sodyum Tuzu Ürün ve sipariş ile ilgili olarak 0342 337 22 83 - 0533 272 71 26 nolu hatlarımızdan destek alabilirsiniz. E.D.T.A Sodyum Tuzu Özellikleri ve Kullanım Alanları:
Ambalaj : 1 Kg Ürün Adı : E.D.T.A 4 Sodyum Tuzu Fiziksel Hali : Katı Ürünün Kargoya Verildiği Merkez : Gaziantepden Kargoya Verilir Diğer İsimleri : Trilon B, Etilendiamin tetraasetik asit sodyum tuzu Formul : Na4EDTA Tanımı : Beyaz, toz. Ambalaj birimi : 1 kg'lık torbalarda. Kimyasal adı : Tetra sodyum etilendiamin tetra asetat. Spesifikasyonlar : Erime noktası : ~ 400 oC Sebeil asit olarak konsantrasyon : ~ % 67 Hacim yoğunluğu : ~ 730 Su yüzdesi (K.Fisher) : ~ % 5 Molekül ağırlığı : 380 g/mol Sudaki çözünürlük 20 oC : ~ 100 g/lt pH (suda %1 çözelti) : ~ 11 Sudaki çözünürlük 80 oC : ~ 1150 g/lt pH 11'de Kalsiyum : ~ 225 Tetra sodyum tuzu olarak konsantrasyon : ~ % 87 bağlama kapasitesi Tutuşma sıcaklığı : > 200 oC Özellikleri: Trilon B beyaz tozdur. Su ve polar solventlerde çözünür. 150-200 oC'de dekompze olur, yavaş yavaş kristalizasyon suyu verir ve rengini kaybeder.

 

Kullanım alanları: Salata sosları, margarin, mayonez, işlenmiş meyve ve sebze, konserve balık ve alkolsüz içecekler gibi çeşitli alanlarda kullanılan bir kelatlama ajanıdır. Gıdaların üretiminde kullanılan ve modern gıda üretim teknolojilerinin bir parçası olan makinalardan kaynaklanan metal kontaminasyonunu elimine ederek, ileri safhalarda söz konusu bulaşmaların yol açacağı bulaşmaların yol açacağı acılaşma ve renk kayıplarını önler.

TRILON B TİPLERİ HAKKINDA GENEL BİLGİ

Trilon B'de bulunan aktif madde , uluslar arası olarak ifade edilen EDTA'dır. EDTA kompleks reaksiyonlarında yer alan 6 fonsyonel gruplu bir aminokarboksilik asittir. Edta bileşiği Etilen diamintetra asetik asit kısaltmasidir.Edtapolyamino karboksilik asid bileşiğidir. EDTA labortuar'da metal iyonlarını tutmak için kullanılır. Biyokimya ve moleküler biyolojiiyon tüketici olarak Enzimlere karşı kullanılır. Analitik kimyada compleks metriktitrasyon, Su sertliği Maskeleyici ajanlar analizelerinde kullanılır. Özellikleri : Trilon B beyaz tozdur. Su ve polar solventlerde çözünür. 150-200 oC'de dekompze olur, yavaş yavaş kristalizasyon suyu verir ve rengini kaybeder. Trilon B'de bulunan aktif madde , uluslar arası olarak ifade edilen EDTA'dır. EDTA kompleks reaksiyonlarında yer alan 6 fonsyonel gruplu bir aminokarboksilik asittir. Kompleks oluşturma: En önemli özelliği Ca, Mg, Cu, Zn, Cd, Kurşun, mangan, demir, Al, civa ve diğer polivalent metal iyonlarıyla geniş bir pH aralığında suda çözünür kompleksler oluşturabilme kabiliyetleridir. Kompleksleşme reaksiyonu sıcaklıktan çok fazla etkilenmez. Merkezi metal iyonu, onu tipik kimyasal reaksiyonlarında yer almasını engelleyen ligand tarafından daha çok yada daha az bütünlükle çevrelenir. Bu çeşit kompleksler özellikle alkali ortama ve yüksek sıcaklıkara karşı stabildir. Kimyasal stabilite: Trilon B çeşitleri, 200 oC'de basınç altında uzun bir periyodda hidrolize karşı gösterdikleri dirençte inorganik kompleks yapıcı ajanlardan farklılık gösterir. Trilon B çeşitleri güçlü asit ve alkalilere karşı dirençlidir. Kromik asitte, potasyum permanganat ve diğer okside edici ajanlarla (BVT hariç) uzayan periyotlarda yavaş yavaş bozunur. Klor verici maddeler, bütün Trilon B çeşitlerinin performansında etkilidir. Ve toprak alkali ve ağır metal komplekslerini bozabilirler. Trilon B çeşitleri, paslanmaz çelik veya cam kaplarda veya plastikle süslenmiş parlaklık verilmiş kaplarda çözülmüş olmalıdır. Bakır ve gulvenize çelik kullanılmamalıdır. Depolama: Trilon B tozu higroskopiktir ve bu yüzden her zaman sıkıca kapatılmış kaplarda saklanmalıdır. Toz Trilon B'nin doğru depolandığında orj.ambalajında en az 2 yıl raf ömrü vardır. Uygulama ve Kullanım Alanları: Kargaşaya neden olan bir rol oynayan metal iyonlarının yer aldığı endüstriyel proseslerde kullanılır. Su yumuşatmak ve toprak alkali ve ağır metal safsızlıkları uzaklaştırmak için kullanılır. Sık sık evde ve end.kullanım için temizleyici ve deterjanlara katılırlar. Çöken metal tozları ve hidroksitler Trilon B'de çözünebilirler. Su yumuşatma: B çeşitleri, soğutma ve proses suyunu yumuşatmak için kullanılabilir ancak bakır, çinko, Al ve demirsiz alaşımları korozyona uğratabilir. Fe içermeyen metaller korozyona karşı denetlenmelidir. Trilon B çeşitleri, nötralden-alkaliye doğru pH aralığında en çok etkililiktedirler. Bazı sertlik kalıntısı istenmeyen uygulamalarda stokiyometrik oranlardan daha az oranlarda kullanılabilir. Trilon B çeşitleri ayrıca kazan besleme suyunu yumuşatmak için kullanılabilir.

Çamaşır deterjanları: Trilon B çeşitlerinin en önemli özelliği kompleks yapma kapasitesinin yüksek oluşu ve hidrolize karşı direnç göstermesidir. Ayrıca kompleksin, yükselen sıcaklıkta alkali ortamda kararlı olduğu da önem taşır. Deterjanlarda Trilon B çeşitlerinin en önemli fonksyonu perborat ve perkarbonat ağartmasını kararlı yapmaktır. Dekompozisyonu katalizeyen ağır metallerin eser miktarlarının engellemek için % 0,5-0,1 kadar az gereklidir.

Sabun:

Trilon B kalıp sabuna, tuvalet sabunlarına, ve traş sabunlarına renk kaybı ve küf (ekşime, kokma) oluşumunu önlemek amacıyla eklenebilir. (üretim sırasında ekipmanlar sebebiyle sabuna metal parçalar değebilir.) Trilon B kalıp sabuna sabunlaşmadan sonra, şekil verilmeden önce katılabilir. Trilon B toz: Kalıp sabuna: % 0,1-0,2; sıvı sabuna: yaklaşık % 1 oranında eklenmesi gerekir.

Temizleyici ve yağ gidericiler:

Trilon B'nin çözünürlüğü ve hidrolize karşı direnci, onu endüstriyel ve kurumsal temizleyici ve yağ gidericilerde kullanışlı yapar.

Su taşıyan kalıntıların, temizlenmiş yüzeye yerleşmesini engeller ve boru,nozzle ve tanklarda pul oluşumunu önler. Ayrıca, temizleme prosesinin tamamı boyunca deterjanlıklarını ilerleten yüzey aktiflerle etkileşim içindedirler. Trilon B çeşitleri öyle çözünürlerdir ki, birçok formülasyonlarda bulunan fosfatların tamamını veya birkaçının yerini almak için kulanılır. Trilon B çeşitleri, emülsiyonlara(yağlayıcı, parlatıcı dahil), su sertliği ve polivalent metal iyonlarının etkisini en aza indirmek için katılabilir.

Elektrolizle kaplama:

Trilon B tuzu, polifosfatları stabilize etmek için ve kireç sabunlarının topaklaşmasını önlemek için alkali yağ gidericilerin bütün çeşitlerine katılır.

Bu yağ giderme banyolarının çalışma süresini uzatır.

Trilon B tozu, nötral ve alkali pas giderme ve pul giderme (birikinti giderme) banyolarında kullanılır.

Fotoğrafçılık:

Trilon B çeşitleri gibi kompleks yapıcı ajanlar, eğer fotoğrafçılıkta kullanılan geliştiriciler sert su ile yapılmışsa, bu geliştiricilere çökmeyi önlemek amacıyla katılır.

Kauçuk:

Kauçuğun polimerizasyonunda kullanılan katalizör sistemlerinde demir iyonlarını bağlamak için kullanılırlar.

Diğer uygulamalar:

Trilon B çeşitleri, metallerin ayrılması veya ekstrakte edilmesi zorunlu olan durumlarda kimya endüstrisinde kullanılırlar. Trilon B çeşitleri radyoaktif dekontaminasyon proseslerinde kullanışlıdır. Çözünmeyen oksitler veya radyoaktif elementleri çözmek için kullanılırlar. Kompleks, sert yüzeylerden veya ciltten kolaylıkla uzaklaştırılabilir. Formülasyonlar, eğer bir yüzey aktif içerirlerse daha etlidir.

Trilon B çeşitleri tekstilde bir çok ağartma, boyama ve bitirme proseslerinde kullanılabilir.

Güvenlik:

pH'daki artış güçlü bir kokuya sahip amonyak ayrılmasıyla sonuçlanır. EDTA atık sudan biyotik veya abiyotik proseslerle uzaklaştırılabilir.

***Ürünlerimizin özelliklerine uygun olan tüm belgeleri mevcut olup, talep edildiğinde siparişle beraber gönderilmektedir

 

EDTA
OTHER NAME(S): Acide Éthylènediaminetétracétique, Calcium Disodium Edathamil, Calcium Disodium EDTA, Calcium Disodium Edetate, Calcium Disodium Versenate... Show More
Read Reviews (30)
Overview
Uses
Side Effects
Interactions
Dosing
Overview Information
EDTA is a prescription medicine, given by injection into the vein (intravenously) or into the muscle (intramuscularly).
Intravenous EDTA is used to treat lead poisoning and brain damage caused by lead poisoning; to see how well therapy for suspected lead poisoning is working; to treat poisonings by radioactive materials such as plutonium, thorium, uranium, and strontium; for removing copper in patients with a genetic disease called Wilson's disease; and for reducing levels of calcium in people whose levels are too high.

 

EDTA is also used intravenously for heart and blood vessel conditions including irregular heartbeat due to exposure to chemicals called cardiac glycosides, "hardening of the arteries" (atherosclerosis), chest pain (angina), high blood pressure, high cholesterol, stroke, and blood circulation problems

Other intravenous uses include treatment of cancer, rheumatoid arthritis, osteoarthritis, an eye condition called macular degeneration, diabetes, Alzheimer's disease, multiple sclerosis, Parkinson's disease, and skin conditions including scleroderma and psoriasis.

EDTA is used in the muscle for lead poisoning and related brain damage.

EDTA is sometimes used as an ointment for skin irritations produced by metals such as chromium, nickel, and copper.

Eye drops containing EDTA are used to treat calcium deposits in the eye.

In foods, EDTA bound to iron is used to "fortify" grain-based products such as breakfast cereals and cereal bars. EDTA is also used to help preserve food; and to promote the color, texture, and flavor of food.

In manufacturing, EDTA is used to improve stability of some pharmaceutical products, detergents, liquid soaps, shampoos, agricultural chemical sprays, contact lens cleaners and cosmetics. It is also used in certain blood collection tubes used by medical laboratories.

 

How does it work?
EDTA is a chemical that binds and holds on to (chelates) minerals and metals such as chromium, iron, lead, mercury, copper, aluminum, nickel, zinc, calcium, cobalt, manganese, and magnesium. When they are bound, they can't have any effects on the body and they are removed from the body.
Genetic toxicology of ethylenediaminetetraacetic acid (EDTA).
Heindorff K, Aurich O, Michaelis A, Rieger R.
Abstract
EDTA and its salts have a number of applications in medicine and pharmacy. EDTA is used to remove calcium from the human body, and serves as an anticoagulant and as a detoxicant after poisoning by heavy metals. It is often used in analytical chemistry for complexometric titrations and many other purposes. Because the compound is of rather low toxicity, it is used as a food additive to bind metal ions. EDTA affects the inhibition of DNA synthesis in primary cultures of mammalian cells. This may be due to impairment of enzymes involved in DNA replication. Some early studies have shown that EDTA leads to morphological changes of chromatin and chromosome structure in plant and animal cells. These alterations consist of dispersion or swelling of chromosomes or a loss of interphase chromatin structure. For several test systems, a low chromosome-breaking activity of EDTA has been reported. A weak activity in the induction of gene mutations has also been observed. It is well established that EDTA influences chromosome breakage by mutagenic agents. In particular, when applied in combination with chemical mutagens, EDTA enhances mutagen-induced aberration frequencies. Furthermore, the chelating agent is able to increase the incidence of meiotic crossing-over. This has been demonstrated for many gene loci in Drosophila melanogaster, Chlamydomonas reinhardi, Neurospora crassa and Zea mays. EDTA interferes with DNA repair processes that take place after exposure to mutagens. In E. coli or Micrococcus radiodurans as well as in Chinese hamster cells, the fast repair component detectable after treatment with ionizing radiation or bleomycin is inhibited by EDTA. In plant cells exposed to gamma-rays, EDTA inhibits unscheduled DNA synthesis. The mechanism by which EDTA causes these effects remains poorly understood. The sequestering of metal ions by the chelating agent is obviously responsible for functional and structural alterations of the genetic material. Although EDTA produces a whole set of genetic effects it seems to be a harmless compound to man as far as genotoxicity is concerned. The data presently at hand, however, are not sufficient for a reliable risk assessment.
PMID: 6406880 DOI: 10.1016/0165-1110(83)90001-5
ABSTRACT
The chelating agent EDTA (ethylenediaminetetraacetic acid) is a compound of massive use world wide with household and industrial applications, being one of the anthropogenic compounds with highest concentrations in inland European waters. In this review, the applications of EDTA and its behavior once it has been released into the environment are described. At a laboratory scale, degradation of EDTA has been achieved; however, in natural environments studies detect poor biodegradability. It is concluded that EDTA behaves as a persistent substance in the environment and that its contribution to heavy metals bioavailability and remobilization processes in the environment is a major concern.

 

Keywords: EDTA; environment; degradation.

CONSUMPTION AND APPLICATION OF EDTA

Metal ions cause detrimental effects in several industrial processes and in the formulation of many products. Earth alkaline divalent cations such Ca(II), Mg(II) and Ba(II) form insoluble precipitates with carbonates, sulfates and phosphates. In addition, the presence of transition metal ions such as those of copper, iron, zinc and manganese may trigger chemical processes of corrosion, catalytic degradation, polymerization inhibition, redox reactivity and changes in the coloring of products1. In industrial processes these metal cations may come from the process waters, raw materials, equipment erosion and corrosion. They may also be added as a specific metal species, but they may later suffer undesired alterations due to changes in concentration, pH, oxidation, or reactions with other ingredients during the process. EDTA is a chelate ligand with a high affinity constant to form metal-EDTA complexes, being deliberately added to sequester metal ions .

EDTA was patented in Germany in 1935 by F. Munz. The molecule is a substituted diamine (Figure 1) usually marketed as its sodium salts. It is a powerful complexing agent of metals and a highly stable molecule, offering a considerable versatility in industrial and household uses2 (Table 1). Since it is applied predominantly in aqueous medium, it is released into the environment through wastewaters. Its presence in soils may be due to agrochemical application or to the disposal of products containing EDTA in garbage reservoirs. It is highly unlikely to find the compound in the air because of the impossibility of volatilization from waters or soils. Although this could occur for example, in the event of aerial application of the compound (e.g.: agrochemical application).

The product is marketed worldwide under 30 different trademarks and its use in the world is massive and increasing3. In 1992, the annual consumption in Europe was in the order of 26,000 tons 4 and in 1997 this value had increased to 32,550 tons5. Given the magnitude of this use, EDTA is one of the organic pollutants found in highest proportions in surface waters in central Europe6,7.

As it can be seen in Table 1, the main application of EDTA is in cleaning products and detergents based on perborates as stabilizers and, in some countries, as an alternative to phosphates in detergent formulation. In 1990, a consumption of 25,000 tons was estimated in Germany in laundry detergents8.

The use of the chelate in the pulp and paper industries is of considerable magnitude (13% of the world market). This proportion could increase progressively if the pulp and paper industry favors pulp producing processes in which bleaching is free from chlorine containing compounds or TCF pulp (totally chlorine free). EDTA or DTPA (diethylenetriaminepentaacetic acid) are used to avoid the undesirable effects of ferric, cupric and manganic ions in bleaching. In the bleaching stage with hydrogen peroxide or ozone, those metals promote the formation of hydroxyl radical (OH·) which destroys the cellulose fiber and decompose the bleaching agents. In some cases, chelators are also used during the oxygen delignification stage. It is illustrative to point out the Scandinavian situation, where a rapid increase in the consumption of EDTA and DTPA has been observed, associated with the production of TCF pulp. It should be born in mind that the Scandinavian pulp and paper industry alone used 23,000 tons of chelating agents during 19983 which is close to the 26,000 tons of the total consumption of EDTA in Western Europe in 19924.

ECOTOXICOLOGICAL RISKS OF EDTA

There is increasing concern about the direct or indirect potential effects of the presence of EDTA in the environment. Numerous field studies have shown that complexation with EDTA may mobilize contaminant metal ions. EDTA may avoid the precipitation of heavy metals in solution or, on the contrary, cause a dissolution effect of heavy metals adsorbed in sediments7,9,10. Hence, the result is an enhanced mobilization of heavy metals. Attention has also been paid to the fact that EDTA can solubilize radioactive metals and increase their environmental mobility12-14.

Another aspect to be considered, is the possible contribution of EDTA in eutrophication water processes. Sillanpää7 warns that this phenomenon is relevant, since the molecule contains approximately 10% of nitrogen that could eventually be available to the aquatic microbiota. EDTA would also have an indirect effect, when it redissolves the calcic and ferric phosphates, releasing phosphorous and thus contributing to an increase in the productivity of the waters. There could also be a larger bioavailability of Fe+3 (essential micronutrient for microalgae) thus stimulating their growth.

Although the isolated molecule does not present a risk of bioaccumulation, the ligand-metal complexes may significantly increase the bioavailability of extremely dangerous heavy metals. In fact, the dissolution and bioavailability of heavy metals are phenomena worth of greater attention. Vassil et al.15 studying the role of EDTA in the consumption of lead in a variety of the mustard plant, discovered a concentrating effect of 75 times, which is highly significant if account is taken that it is a potentially dangerous phenomenon in terms of metal biomagnification processes. Enhanced uptake of heavy metals by plants has been extensively studied16-18 due to its potential use in heavy metal phytoextraction technologies, but special attention has been paid to their concomitant lixiviation and migration phenomena17.

Dufková19 studied the interaction of EDTA with photosynthetic organisms and found that EDTA is toxic, since it inhibits cellular division, chlorophyll synthesis and algal biomass production. It is interesting to note that the same concentration of EDTA chelated with micronutrients did not present these toxic effects.

Greman et al.17 found strong inhibitory effects of EDTA over plants such as: necrotic lesions on leaves of Chinese cabbage, absence of development of arbuscular mycorrhizae in Red clover plants, and stress on soil microfauna, being soil fungi the most affected community.

Research of the cellular toxicity of chelates indicates, in general, noxious effects normally attributed to the lack of metals essential to various cellular functions. The findings of Hugenschmidt et al.20 are particularly interesting. They trace the effects of chronic exposure to low levels of EDTA (< 100 mM) in cultured cells of rat kidney, resulting in high rates of cellular death. In addition, Gabard21 reported inhibition of DNA, RNA and protein synthesis due to the chelation of zinc and manganese in rat liver cells after EDTA-Ca(II) administration.

Regarding to oral human exposure, Fe(III)-EDTA salts are considered safe and used as an iron supplement22 source. However, a recent study proposes carbonyl iron as a better fortificant than NaFeEDTA salts, because it resulted to be less toxic when tested in acute toxicity in young rats23. Free EDTA has been shown to produce adverse reproductive and developmental effects in mammals. However, it is considered as a safe substance if used externally; which is relevant considering that EDTA is a common ingredient in cosmetic formulation24.

EDTA has antibacterial activity and metal chelation of the ligand reduces this activity25. The effect of chelating agents upon gram negative bacteria has been reported. EDTA causes disruption of the outer membrane, since it is capable of removing its calcic and magnesic divalent cations, with the consequent loss of substantial amounts of lipopolysacharide, which in turn, make cells susceptible to the action of many substances such as detergents, proteases, lipases and lysozymes26-28. Hennecken et al.4 clearly show a total inhibition of a bacterial consortium by free EDTA, these bacteria only manage to degrade EDTA if it is complexed with equimolar quantities of calcium or magnesium ions.

Paradoxically, even though literature provides evidence of the persistence and low natural degradability of the chelate, the study of its toxicity is basically documented for acute toxicity bioassays and there is not sufficient information for the evaluation of chronic toxicity.

Until recently, it used to be postulated that the concentration of free metals in solution was the main factor in the bioavailability and toxicity of metals. It has also been proved that heavy metals complexed with EDTA (and also with humic acids) are biologically available and toxic. This has been demonstrated in the study of Tubbing et al.28 with river microalgae in which photosynthesis is inhibited at low concentrations of EDTA chelated with copper (II) (5-10 mM) and unchelated EDTA. As stated previously, this is also evident in the work of Vassil et al.15.

Acute toxicity bioassays have been used to compare the toxicity of free heavy metals (Hg+2, Cd+2, Pb+2, Zn+2, Cu+2, Fe+3, Mn+2) with the EDTA-complexes, in Photobacterium phosphoreum bacteria29 and for the fresh water cladoceran Daphnia magna30. These studies show that the formation of the chelate-metal coordination compound, achieves a decrease in the toxicity of free heavy metals. On the contrary Guilhermino et al.31 found that Cd(II)-EDTA and Cu(II)-EDTA complexes were more toxic than their respective free metals in acute toxicity test in Daphnia magna.

EDTA IN SURFACE WATERS

Although there is not enough research describing the behavior of the chelate in surface waters, it can be seen that this is a complex, multivariable and dynamic phenomenon, which makes it difficult to predict fate and to quantify the speed of the processes involved. Some authors warn that the theoretical calculations based on chemical balance are not a useful tool for predicting EDTA speciation in effluents, since the kinetic dimension of the processes of metal interchange cannot be overlooked32,33. The influence of the suspended material and the consequent occurrence of adsorption and desorption phenomena on their surface, must be also considered.

The validity of the theoretical approximation is further diminished if account is taken of the fact that EDTA is one of many natural and anthropogenic ligands which can be found in the aquatic medium. Moreover, the geochemical nature of rocks underlying the type of fresh water studied must be taken into consideration, since this will influence the pH and the provision of metals to the waters.

In natural environments EDTA occurs as metal-EDTA complexes. At present, there is not enough information on the aquatic speciation and on the natural ligands competition phenomena which are crucial for predicting the metal-EDTA complexes environmental fate33. Table 2, shows some of the ranges of concentration of EDTA found in natural waters. The highest value has been found in England (1120 mgL-1).

In surface waters, the only significant process of removal of EDTA is the possibility of photolysis by means of the action of sunlight upon the Fe (III)-EDTA complex32,34. It could be possible, in theory, to speculate on a continuous photolysis of the complex EDTA-Fe(III) which would entail the massive degradation of the chelate. However, Kari and Giger32 point out the factual impossibility of such phenomenon on the basis of the intensity of light and the adsorption phenomena of photostable complexes of EDTA. This is in agreement with its relatively high concentrations that have been found in European continental waters6,7.

According to the literature, there may be photolysis under high transparency conditions and in shallow watercourses. In the study of Kari and Giger32, performed in natural waters, photodecomposition of the EDTA-Fe(III) complex is reported as the main degradation process.

The studies on the photodegradability of EDTA in the environment should also take into account the cloud cover in the sky and suspended material in the waters, since these are factors that condition the intensity of light received by water32,34.

EDTA IN GROUND WATER AND SOIL

Essentially, the studies of EDTA behavior in soil and ground water attempt to verify metal lixiviation phenomena. The possibility that organic anthropogenic ligands increase the concentration of metals dissolved in subsoil water has been formulated. Nowack et al.35 established that EDTA behaves as a persistent substance in its passage towards ground water and that its speciation varies. Remobilization of metals through the infiltration course of water from a calcarean lithic riverbed towards subsoil water was demonstrated.

The removal of heavy metals in soil by EDTA is known and in fact, it is a proposed technique for washing soil contaminated with heavy metals36-38. With respect to the passage of EDTA to ground water, through the soil, it is necessary to mention a mobility study of heavy metals in a landfill by Lo et al.9 They establish that the presence of EDTA inhibits the adsorption of heavy metals to the soil, thus inducing their lixiviation.

The mobility of heavy metals in soils is conditioned by numerous factors, among which, CO2 partial pressure, temperature, dissolved organic matter, micro-organisms, identity of the metal(s) and its (their) respective concentration(s), etc. Thus, the way, in which EDTA influences the mobility of metals, is also multivariable and complex39.

The possibility of finding EDTA biodegrading activity in ground water and soil would be of interest, since in this substrate photolysis could not constitute a degradation option. However, significant biodegrading activities have not been found. There are only registers of poor and slow performances of microbial consortia in soil and subsoil 40-42.

EDTA BIODEGRADATION

EDTA resistance to bacterial biodegradation is widely documented41-44. The compound is harmful to gram negative bacteria, causing the destruction of their outer membrane26-28.

At laboratory scale, biodegradation by enriched bacterial cultures has been achieved. Nörtemann5, suggested catabolic pathways of EDTA in bacteria, this approach considers uncomplexed EDTA entrance to the cell, and shows the loss of an acetyl group as the first step in this intracellular oxidation. However, it has been recently demonstrated that the bacterial strain DSM 9103 (located in the Rhizobium-Agrobacterium branch), degrades EDTA as a sole carbon source and it is able to perform the cellular uptake of the metallic complex EDTA-Ca (II), with intracellular calcium polyphosphates accumulation45. The identified bacterial strains with EDTA degrading abilities are all aerobic, gram negative bacteria46.

In cases in which degradation of the chelate has been proved, it is necessary to point out that both the metal-chelate speciation and the bacterial species in question, are determining factors in the ability to degrade the compound. Thus, in certain cases there is only the ability to degrade metal-chelate complexes of low stability constant, as for example EDTA-Ca (II) and EDTA-Mg (II) complexes4,45,47 and that in other cases, the exact opposite occurs: the EDTA-Fe(III) complex with a high stability constant is degraded13,48,49. Furthermore, from the data available for the intracellular catabolism of EDTA, no generalizing pattern with respect to the influence of metal speciation on degradation can be deduced50.

Table 3 presents the data of bacterial activities with complete EDTA mineralization and their respective references. Palumbo et al.13 found that the bacterial ability to degrade EDTA is rare, since they could not obtain degrading consortia from places polluted with the chelate. The only degradation achieved was with a strain of Agrobacterium sp. previously isolated from a nuclear waste disposal facility and of known EDTA degrading activity, and not with other related Agrobacterium strains.

EDTA IN WATER TREATMENT PLANTS

In drinking water plants

In drinking water plants, filtering trough activated carbon is useless to remove the chelate (given its hydrophilic character). According to Gilbert and Hoffmann-Glewe51, in drinking water producing plants with ozone treatment it is possible to degrade EDTA, the degree of degradation depending on the ozone level.

Attempts have been made to degrade EDTA, in order to produce drinking water, by means of technologies contemplating the use of photochemical oxidation systems like UV/H2O2 treatment52,53. However, the same authors warn that the required concentration of peroxide is such that the residual peroxide exceeds the peroxide concentration allowed by the German standards they also point out that by-products of EDTA degradation can be promoters of microbial re-growth. In order to avoid the potential microbial enrichment, they suggest a later chlorinating phase, but they do foresee the potential danger of the production of highly toxic substances resulting from this step, as well as pointing out that chlorinating might be inefficient, since both glycinate and iminodiacetate (products of EDTA degradation through UV/H2O2 treatment) may reduce the disinfecting ability of the chlorinating step since they can be substrates of microbial growth.

In waste water treatment plants

Most of the reports indicate that biological treatments are not efficient in the degradation of the chelate. Hinck et al.44 evaluate EDTA biodegradation in a complete study using four types of different sludge, finding a total absence of EDTA degradation.

The chelate passes unmodified through wastewater treatment plants because of its resistance to biodegradation and scarce adsorbability. Thus, in Swiss sewage treatment plants equipped with both chemical and biological treatment systems, it is found that no significant EDTA elimination is achieved54,55. Nirel et al.55 found that 10 of 12 domestic sewage treatment plants had EDTA in their effluents. In industrial waste water treatment plants, the chelate generally shows poor biological degradability44,56 and presents two additional problems: it affects their efficiency to remove heavy metals and increases the charge of dissolved nitrogen in effluents. Saunamäki56, shows EDTA increases the level of nitrogen released by activated sludge of a pulp plant run under TCF processes , which is highly undesirable since this input could increase the receiving water's productivity. The study also reported that activated sludge treatment does not remove the chelate but that, with the addition of aluminum sulfate, a 65% removal of EDTA was achieved.

Sillanpää57, reports a 17% to 30% of EDTA reduction, in three plants of activated sludge of finish pulp and paper mills. Using a synthetic TCF cellulose bleaching effluent Mutis et al.58 report a maximum of 33% EDTA removal and 19% DTPA removal in activated sludge acclimatized to a mixture of EDTA and DTPA. Virtapohja and Alén59, reported an increase in the degrading efficiency in activated sludge from pulp and paper effluents, when operating with alkaline pH, in which an average EDTA reduction of 10% at neutral pH, increases to 50% at pH 8 to 9. The greatest degrading efficiencies are reported by Van Ginkel et al.60 with an 80% EDTA degradation at pH 8 and by Kaluza et al.61 which reached an 80% removal in a pulp and paper mill TCF effluent.

The presence of EDTA and DTPA cause serious effects in the biological treatment system, being more notorious with EDTA58. EDTA is undesirable in biological treatment systems specially of those used to achieve metal removal, because the ligand prevents bacterial metal adsorption phenomenon62. These results have lead to the study of chemical treatment previous to the biological systems to increase the efficiency of this last one.

At laboratory scale, combined UV/H2O2 treatment achieves rapid degradation in a synthetic TCF effluent63; just like the combined UV/ozone treatment proved to be very efficient in the degradation of EDTA and DTPA chelates (98%) degradation on synthetic TCF effluent64. The use of catalytic photooxidation processes to degrade EDTA is also currently being studied65-66, in which a semiconductor like TiO2 or iron doped TiO2 is used and activated by means of ultraviolet light. It has also been suggested that in order to treat large quantities of waste water, it would be economically more convenient to perform a pre-treatment combining ozone or TiO2 with the use of ionizing radiation (gamma rays) followed by a classic phase of biodegradation68. The authors foresee that the main problems of the former techniques are energetic and economic, apart of achieving a complete toxicity assessment of the resulting by-products.

EDTA degradation has been attempted by diverse AOTs which has been extensively reviewed by Sillanpää and Pirkanniemi69. These technologies include: g-radiolysis68, TiO2 photocatalysis66, UV/O364, UV/H2O253,64, solar ferrioxalate/H2O270 , UV/electrochemical treatment71, Fenton treatment H2O2/Fe(II)72, CAT-driven Fenton reaction73, H2O2 microwave-activated photochemical reactor treatment74 among others.

CONCLUSIONS

In general, it can be seen that EDTA behaves as a persistent pollutant in the environment, enhancing the mobility and bioavailability of heavy metals. In natural environments studies detect poor bio-degradability of the ligand.

The interaction mechanisms of EDTA with living organisms are not sufficiently clarified and the range of their potential risks is not known. The studies that evaluate the toxicity of free heavy metals and complexed with EDTA do not enable the prediction of what the effect of the chelate presence will be. The effects of EDTA vary according to the type of organism studied, the concentration of EDTA and the metal analyzed.

There is an urgent need to investigate more on the bioaccumulation of heavy metals in the trophic chain promoted by EDTA and on the remobilization effect of metals in waters and soils. Studies on the potential risk of increased bioavailability of heavy metals by edible plant species exposed to metal-EDTA complexes are also missing.

The studies made so far, have focused, predominantly, on the evaluation of the bacterial ability to biodegrade EDTA at a laboratory scale, and it is to be noted that this property is extremely scarce in nature.

ACKNOWLEDGEMENTS

We thank FONDECYT Grant No 1010840 and to Dr. S. Valenzuela for the critical lecture of the manuscript.

 

EDTA'ya Bağlı Psödotrombositopeni Sonucu Gereksiz
Transfüzyon Yapılan Bir Kırım-Kongo Kanamalı Ateşi Olgusu
EDTA-Dependent Pseudothrombocytopenia and Unnecessary Transfusion in a
Patient with Crimean-Congo Haemorrhagic Fever
Gülbin Canpolat1
, Zeliha Koçak-Tufan1
, Cemal Bulut1
, Bülent Alioğlu2
, Sami Kınıklı1
, Ali Pekcan Demiröz1
1
Ankara Eğitim ve Araştırma Hastanesi, İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Kliniği, Ankara, Türkiye 2 Ankara Eğitim ve Araştırma Hastanesi, Hematoloji Kliniği, Ankara, Türkiye Özet Trombositopeni, Kırım-Kongo kanamalı ateşi (KKKA) olan hastaların tedavisinde karşılaşılan ana problemdir. Burada KKKA tanısıyla izlenirken refrakter trombositopeni geliştiği düşünülen ve tedavisi sırasında aslında psödotrombositopeni olduğu anlaşılan bir olgu sunulmaktadır. Elli üç yaşında kadın hasta KKKA ön tanısıyla kliniğimize Kastamonu'dan sevk edilmişti. Laboratuvar bulguları hemoglobin 11 mg/dl, beyaz küre 3300/mm3 , trombosit 17 000/mm3 şeklinde ve biyokimyasal parametreleri normal sınırlardaydı. KKKA virusu IgM antikoru pozitif olarak saptandı. Beş gün süreyle toplam 4 ünite aferez trombosit süspansiyonu ve 4 ünite random trombosit süspansiyonu verilmesine rağmen trombositopenisi sürdü. Biyolojik tehlike nedeniyle daha önce periferik kan yayması yapılmamıştı. Hastaya refrakter trombositopeni tanısıyla steroid tedavisi verildi. Ancak genel durumu çok iyi olmasına rağmen trombositopenisi sürdüğünden tedavinin beşinci gününde periferik kan yayması yapıldı ve her alanda 10-12'li kümeler halinde trombositler görüldü. Bu normal görünüm karşısında etilendiamintetraasetik aside (EDTA) bağlı psödotrombositopeniden şüphelenilerek tam kan sayımı sitratlı üp kullanılarak yinelendi. Trombosit sayısı 417 000/mm3 olarak normal sınırlar içinde bulundu. Genel durumu iyi olan hasta on gün içinde taburcu edildi. Klimik Dergisi 2011; 24(3): 184-6. Anahtar Sözcükler: Kırım-Kongo kanamalı ateşi virusu, psödotrombositopeni.
EDTA
EDTA is poorly absorbed from the GI tract (<5%) and, as a consequence, should only be administered by a parenteral route.4 It is primarily distributed in extracellular fluids, which limit its capacity to chelate intracellular metals. EDTA is also known to redistribute lead to the brain and should not be used to assess for lead mobilization in children.4 EDTA can be obtained as disodium EDTA or calcium disodium EDTA with different applications of use. The FDA archived a report from 2013 entitled, "Questions and Answers on Edetate Disodium (marketed as Endrate and generic products."63 EDTA is used to refer to two similar but separate drugs with differing indications of use. The first drug is calcium disodium EDTA (Versinate), and the second drug is disodium EDTA (Endrate). The confusion lies in the common name of EDTA for both drugs; however, there are two very separate indications of use for each. Calcium disodium EDTA is approved by the FDA for use in lead poisoning and has been the mainstay of treatment for childhood lead poisoning since the 1950s.4 The second drug, disodium EDTA, is approved for use in patients with rhythm disorders from drug intoxication such as digitalis where there is hypercalcemia. Calcium disodium EDTA, Versinate, will not deplete calcium if given rapidly, while disodium EDTA will remove calcium through renal excretion in a life-threatening fashion if administered rapidly. In fact, erroneous administration of a bolus infusion of disodium EDTA for lead poisoning, when calcium disodium EDTA was meant to be administered, resulted in the death of a child.64 Between 1971 and 2007, there were 11 deaths associated with the use of EDTA infusions. Nine of these deaths were attributed to disodium EDTA specifically, while two of the deaths only refer to EDTA as the causative agent. In fact, in five of the deaths, there was confusion when ordering the drug that resulted in the adverse outcome. There have been no deaths reported from administering calcium disodium EDTA. Risks associated with IV EDTA chelation have been reported to be renal failure, arrhythmia, tetany, hypocalcemia, hypotension, and prolongation of bleeding time, among others.4,34
Medical Treatment of Peripheral Artery Disease
Heather L. Gornik, Mark A. Creager, in Vascular Medicine: A Companion to Braunwald's Heart Disease (Second Edition), 2013
Disodium ethylenediaminetetraacetic acid (EDTA)
EDTA combines with polyvalent cations, including calcium ions, to form a soluble nonionic complex that can be excreted. It requires IV administration and is usually administered two or more times a week. The rationale for using EDTA in patients with atherosclerosis, including those with PAD, is to leech calcium out of atherosclerotic plaque, induce plaque regression, and reduce the severity of stenosis. Also, EDTA may decrease metal ion-dependent formation of reactive oxygen species (ROS) and metal ion-dependent lipid peroxidation.234 There is limited biological evidence to support its efficacy in atherosclerosis.235
The Program to Assess Alternative Treatment Strategies to Achieve Health (PATCH) assessed the effect of EDTA on endothelium- dependent vasodilation in patients with CAD. Up to 33 treatments of IV EDTA over a 6-month period caused no changes in peripheral endothelial function.236 One clinical trial found no effect of EDTA on the severity of atherosclerosis in patients with PAD.237 Two systematic reviews evaluated four placebo-controlled trials that assessed the efficacy of EDTA in patients with intermittent claudication.238,239 These reviews found no evidence that EDTA improves pain-free or maximal walking distance in patients with intermittent claudication.

 

Potential serious adverse effects of EDTA include hypocalcemia, renal insufficiency, and proteinuria. Additional side effects include gastrointestinal and musculoskeletal symptoms, hypertension, tachycardia, and fever. Based on lack of efficacy as well as safety concerns, EDTA should not be used to treat patients with intermittent claudication.

 

Biophysical, Chemical, and Functional Probes of RNA Structure, Interactions and Folding: Part A
Laura Hunsicker-Wang, ... Victoria J. DeRose, in Methods in Enzymology, 2009
1.3.3 Importance of EDTA removal
EDTA is ubiquitous in RNA purification methods, being present in high concentrations in standard TBE (Tris-Borate-EDTA) gel running buffers. EDTA is present in lower micromolar concentrations in many storage buffers in order to chelate residual contaminating metal ions and slow nonspecific RNA hydrolysis. EDTA tightly chelates Mn2+, and the resulting complex is EPR-silent at room temperature and gives a very broad EPR signal at low temperature. Thus, Mn-EDTA chelates will interfere with all experiments described below. For this reason, for quantitative EPR measurements it is important to dialyze RNA samples against several changes of an EDTA-free buffer. Our standard RNA preparation protocol involves gel purification and electroelution followed by dialysis against an EDTA-free buffer for 48-72 h, 4 °C, with 5-7 reservoir changes. RNA is then concentrated (Centricon, YM-3000), ethanol-precipitated, and the washed pellet resuspended in either autoclaved water or buffer to form a stock solution.
Calcium Carbonate
M.M.H. Al Omari, ... A.A. Badwan, in Profiles of Drug Substances, Excipients and Related Methodology, 2016
4.2.2 Complexometry
Ethylenediaminetetraacetic acid (EDTA) is used as a complexing agent to determine CaCO3 in its pure form [1,2,216] or in different dosage forms including tablets [262], chewable tablets [263], and oral suspension [265]. Full detailed procedures are mentioned in Tables 12-15.
Previously, micro- and macrodeterminations of serum Ca by direct titration with EDTA with ammonium purpurate as the indicator [280,281]. The end point is determined by changing the indicator color to purple [280] or graphically from spectrophotometric readings at 620 nm taken during the titration [281]. Also Beale and Bostrom used a microtitration of Ca in the presence of Mg in serum and urine, with EDTA as titrant and Corinth Ca (Plasmocorinth B) as indicator [282].

 

Garvey et al. analyzed Ca in dietary supplements using complexometric titration with EDTA and then, following ion exchange of the Ca ion present for hydronium ion, by acid-base titration with NaOH [283]. Also statistical comparison of both methods was adopted.

 

General Considerations
Lars Gerhardsson, George Kazantzis, in Handbook on the Toxicology of Metals (Fourth Edition), 2015
5.2 Edetate Calcium Disodium

 

 

EDTA, another classic chelator, and related compounds can chelate many divalent and trivalent metals in vitro. CaNa2EDTA is a derivative of EDTA. Infusion of the sodium salt will chelate calcium from the body and may result in hypocalcemic tetany. However, the calcium disodium salt, also known as calcium EDTA, has been used as a therapeutic agent because it will bind lead with displacement of calcium from the chelate. Thus, the PbNa2EDTA complex will be excreted from the body fluids leaving Ca behind. However, it has dangerous toxic effects through the chelation of essential metals. Calcium EDTA is poorly absorbed from the gastrointestinal tract (< 5%) and so has to be given by intravenous infusion. It is distributed mainly in the extracellular fluid and excreted rapidly by glomerular filtration, with about 50% appearing in the urine within 1 h. The drug has an elimination half-life of 1.4-3 h in adults and is entirely excreted within 24 h. The toxic effects of calcium EDTA make it necessary to monitor its administration with care. The most important toxic effect is on the kidney. Side effects in the treatment of lead poisoning include a febrile reaction with headache, myalgia, nausea, and vomiting. Furthermore, EDTA may redistribute lead to the brain after acute or chronic lead exposure (Andersen, 2004). Lacrimation, nasal congestion, mucocutaneous lesions, glycosuria, hypotension, and electrocardiogram abnormalities have also been reported. Prolonged courses of calcium EDTA give rise to trace metal depletion, the most marked being due to the excretion of zinc. Chelation therapy with EDTA has been discussed as an alternative treatment for atherosclerotic cardiovascular diseases. Seely et al. (2005) undertook a systematic review of published articles in this field. The authors concluded that the best currently available evidence did not support the therapeutic use of EDTA chelation therapy in the treatment of cardiovascular disease. Similar results have been reported in a review by Shrihari et al. (2006). The calcium chelate of EDTA (CaEDTA) has shown teratogenic effects and produced abnormalities in rat pups removed by cesarian section on day 21. Increases in several abnormalities (submucous cleft, cleft palate, adactyly/syndactyly, curly tail, and abnormal ribs and vertebrae) were observed with increased doses of CaEDTA. Incorporation of zinc into the chelate had a protective effect (Brownie et al., 1986).
Many of the side effects of calcium EDTA have been ascribed to excessive chelation after the administration of too high a dose over a short period of time. Because of its adverse effects, calcium EDTA is being progressively replaced by DMSA in the treatment of lead poisoning (Aposhian et al., 1995).

 

 

The Ecotoxicity of Cleaning Product Ingredients
Josef Steber, in Handbook for Cleaning/Decontamination of Surfaces, 2007
3.3.6. EDTA
Ethylene diamine tetraacetate (EDTA) was previously used as a bleach stabilizer but only plays a minor role today as an auxiliary cleaning agent. lts critical environmental evaluation results from the poor biodegradability and the potential to remobilize toxic heavy metals from aquatic sediments and Sludges. Ho wever, EDTA is not considered critical from an ecotoxicological point of view. It has a very low acute toxicity to fish and to daphniae with LC/EC50 values fairly above 100 mg/l [29,35]. Expectedly, the algal NOEC in standard tests is considerably lower being in the range of 10 mg/l [29] which can be explained by the already discussed deprivation of trace metals essential for algal growth. On the other hand, stimulation effects of EDTA also on algal growth have been reported which may be due to the photodegradation of the Fe3+complex to form a less stable Fe2+ complex which offers an enhanced bioavailability of growth-stimulating iron [35]
Ethylenediaminetetra-acetic acid (EDTA)
EDTA and sodium citrate remove calcium, which is essential for coagulation. Calcium is either precipitated as insoluble oxalate (crystals of which may be seen in oxalated blood) or bound in a non-ionised form. Heparin binds to antithrombin, thus inhibiting the interaction of several clotting factors.
EDTA anticoagulation is used for blood counts; sodium citrate is used for coagulation testing and for the erythrocyte sedimentation rate. For better long-term preservation of red cells for certain tests and for transfusion purposes, citrate is used in combination with dextrose in the form of acid-citrate-dextrose (ACD) or citrate-phosphate-dextrose (CPD).

 

An excess of EDTA affects both red cells and leucocytes, causing shrinkage and degenerative changes. EDTA in excess of 2 mg/ml of blood may result in a significant decrease in PCV assessed by centrifugation and an increase in mean cell haemoglobin concentration (MCHC).8 The platelets may also be affected; an excess of EDTA causes them to swell and then disintegrate, causing an artificially high platelet count, as the fragments are large enough to be counted as platelets. Care must therefore be taken to ensure that the correct amount of blood is added, and that by repeated inversions of the container the anticoagulant is thoroughly mixed with the blood specimen. EDTA is responsible for the activity of a naturally occurring antiplatelet autoantibody, which sometimes causes platelet aggregation of platelet adherence to neutrophils in blood films. All patients with apparent thrombocytopenia therefore require a blood film to identify this in vitro phenomenon. Repeat estimation of the platelet count in an alternative anticoagulant will resolve this problem, as the aforementioned antibody is inactive in the absence of EDTA.9

 

Analysis
EDTA blood, semen, or tissue (e.g., liver, muscle, kidney, spleen) may be tested. Five to 10 ml of EDTA blood is kept refrigerated until mailed to the lab, but it cannot be kept for more than 1 week before being mailed. It should be sent with a cool pack. Semen (1 straw) and tissue (approximately 1-inch cube) should be frozen and shipped with a frozen cool pack. The Orthopedic Foundation for Animals (www.offa.org) currently processes samples for SOD gene testing.

 

 

7.6.4 Calcium Disodium Edetate (CaNa2EDTA)-Clinical Use and Misuse
EDTA, another classic chelator, and related compounds are able to chelate many divalent and trivalent metals in vitro. CaNa2EDTA is a derivative of EDTA. Infusion of the sodium salt will chelate calcium from the body and hypocalcemic tetany may follow. However, the calcium disodium salt, calcium EDTA, has been used as a therapeutic agent, because it will bind lead with the displacement of calcium from the chelate. Thus, the PbNa2EDTA complex will be excreted from the body fluids leaving Ca behind. However, it has dangerous toxic side effects in the chelation of metals. Calcium EDTA is poorly absorbed from the gastrointestinal tract (<5%) and accordingly, it has to be given intravenously. It is distributed mainly in the extracellular fluid and is excreted rapidly by glomerular filtration, about 50% appearing in the urine within 1 h. The elimination half-life of the drug is 1.4-3 h in adults and it is entirely excreted within 24 h. Due to the toxic effects of calcium EDTA, the administration of the agent has to be monitored with care. Kidney is the critical organ. Unwanted side effects of the treatment of lead poisoning include a febrile reaction with headache, myalgia, nausea, and vomiting. Furthermore, EDTA may redistribute lead to the brain after acute or chronic lead exposure (Andersen, 2004). Lacrimation, nasal congestion, mucocutaneous lesions, glycosuria, hypotension, and ECG abnormalities have also been reported as well as allergic reactions (Wax, 2013). Prolonged treatment with calcium EDTA gives rise to depletion of magnesium and trace-metal depletion, the most marked being due to the excretion of zinc.
Chelation therapy with EDTA has been discussed as an alternative treatment for atherosclerotic cardiovascular diseases (Clarke, Clarke, & Mosher, 1955; Meltzer, Kitchell, & Palmon, 1961; Lamas et al., 2013). In a paper by Seely, Wu, and Mills, (2005), a systematic review of published articles in this field was undertaken. The authors concluded that the best current available evidence did not support the therapeutic use of EDTA chelation therapy in the treatment of cardiovascular disease. Similar results have been reported in review papers by Shrihari, Roy, Prabhakaran, and Reddy (2006) and Crisponi et al. (2015). It should be emphasized that EDTA treatment is associated with severe, life-threatening adverse effects. In one trial on possible antiatherogenic effect of EDTA, 6 patients of the experimental group showed clinical signs of potentially lethal hypocalcemia (Sloth-Nielsen et al., 1991), and several fatalities have been reported (Brown, Willis, Omalu, & Leiker, 2006; Baxter & Krenzelok, 2008). Furthermore, there have been reports about severe kidney damage after such chelation therapy (Nissel, 1986). The calcium chelate of EDTA (CaEDTA) has shown teratogenic effects (Catsch & Harmuth-Hoene, 1976) and produced abnormalities in pups of rats removed by cesarian section on day 21. Increases in several abnormalities (cleft palate, adactyly or syndactyly, abnormal rib or abnormal vertebrae) were observed with increased doses of CaEDTA. The incorporation of zinc in the chelate had a protective effect (Brownie & Aronson, 1984).

 

Many of the side effects of calcium EDTA have been ascribed to excessive chelation after administration of high doses over a short period of time. Because of its adverse effects, calcium EDTA is being progressively replaced by DMSA in the treatment of lead poisoning (Aposhian et al., 1995). In earlier studies, CaEDTA has also been used for the treatment of cases with manganese toxicity, showing neurotoxic symptoms resembling Parkinsonism (Andersen, 1999). Later case reports, however, indicate that another antidote, the tuberculostatic agent PAS (paraaminosalicylate), may be a more efficient neuroprotecting agent in manganese toxicity. However, this treatment must be administered early after exposure, before the appearance of irreversible changes (Jiang et al., 2006; Zheng et al., 2009).

 

Acar Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.