1-9 A-D E-G H-M N-P Q-S T-Z

AMPSA (Polyacrylamide methylpropane sulfonic acid) ;

AMPSA (Polyacrylamide methylpropane sulfonic acid) ;


CAS NUMBER; 15214-89-8; 27119-07-9

 

EC NUMBER; 925-482-8; 239-268-0; 608-044-8

 


Synonyms; Acrylamide/2-acrylamido-2-methylpropane sulfonic acid ; 2‐acrylamido‐2‐methylpropanesulfonic acid; poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) ; Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) solution; Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) solution; MFCD00084369 ; Hydrogel, AMPS, Acrylamide, MBA, Water sorption; Poly(Acrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid); 2-Acrylamido-2-methylpropanesulfonic Acid; crylamide/2-acrylamido-2-methylpropane sulfonic acid ; Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels; acrylamide-(2-acrylamido-2-methylpropanesulfonic acid);TBAS;AMPS;TBAS-Q;AMPS MONOMER;Lubrizol AMPS;ACRYLAMIDO BUFFER;2-Acrylamide-2-methy;LABOTEST-BB LT00012662;ACRYLAMIDO BUFFER PK 1;2-Acryloylamino-2-Methyl-1-Pro; 2-Acrylamide-2-methylpropanesulfonic acid; 2-Acrylamide-2-methylpropanesulfonic acid; C7H13NO4S; CB3470952; Copolymer Acrylamide/Diallyldimethylammonium Chloride/Butyl Acrylate/2-Acrylamido-2-methylpropanesulfonic Acid ; Microgels Acrylamide AMPS Swelling Inverse emulsion ; 2-Acrylamido-2-methyl-1-propanesulfonic acid; 15214-89-8; 2-Acrylamido-2-methylpropanesulfonic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid; 2-Acrylamide-2-methylpropanesulfonic acid; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-; 2-Acrylamido-2-methylpropanesulfonate ; 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; 2-acrylamide 2; methylpropanesulfonate; 2-acrylamido-2-methyl-1-propanesulfonic acid; 2-acrylamido-2-methylpropanesulfonate; 2-acrylamido-2-methylpropanesulfonate, monosodium salt; 2-acrylamido-2-methylpropanesulfonate, potassium salt; 2-AMPS; AMPS sulfonate cpd;15214-89-8; 2-Acrylamido-2-methylpropanesulfonic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid; 2-Acrylamide-2-methylpropanesulfonic acid; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-; 2-Acrylamido-2-methylpropanesulfonatePolyacrylamidomethylpropane sulfonic acid; 2-Acrylamido-2-methylpropanesulphonic acid; EINECS 239-268-0; 2-ACRYLAMIDO-2-METHYLPROPANE SULFONIC ACID; 2-acrylamido-2-methylpropane-1-sulfonic acid; XHZPRMZZQOIPDS-UHFFFAOYSA-N; Poly(2-acrylamido-2-methyl-1-propanesulfonic acid); SBB056655; 27119-07-9; 5165-97-9 (mono-hydrochloride salt); AK167027; 2-methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; DSSTox_CID_7770; 1-Propanesulfonic acid, 2-acrylamido-2-methyl-; DSSTox_RID_78560; 2-Acrylamido-2-methylpropanesulfonic acid (AMPS); DSSTox_GSID_27770; 2-(acryloylamino)-2-methylpropane-1-sulfonic acid; J-200043; 2-methyl-2-(prop-2-enoylamino)propane-1-sulfonic acid; 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-; CAS-15214-89-8; 2-methyl-2-(prop-2-enoylamino)propanesulfonic acid; UNII-490HQE5KI5; 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propen-1-yl)amino)-; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propen-1-yl)amino]-, ACMC-209d7e; SCHEMBL19490; KSC527G2P; 490HQE5KI5; Jsp002928; CHEMBL1907040; DTXSID5027770; CTK4C7327; KS-00000XAE; MolPort-000-005-237; AC1L2347; ZINC2020126; 52825-28-2 (potassium salt); Tox21_201781; Tox21_303523;ANW-21384; MFCD00007522; AKOS015898709; MCULE-3715334722; RP26316; RTR-006266; 2-Acrylamide-2-methylpropanesulfonicacid; TRA-0178264; NCGC00163969-01; NCGC00163969-02; NCGC00257492-01; NCGC00259330-01; AN-19296; CC-11302 ; KB-67985;OR051352; OR251112; P411; 2-Acrylamido-2-methyl-propanesulfonic acid2-acrylamido-2-methyl propyl sulfonic acid; 2-acrylamido-2-methyl-propane sulfonic acid; LS-120969; TR-006266; 2-Acryloylamido-2-methylpropanesulfonic acid; A0926; FT-0610988; ST50307457; 2-Acrylamido-2-methyl-1-propane sulfonic acid; C-35020; 2-Acrylamido-2-methyl-1-propanesulfonic acid, 8CI; 2-Acrylamido-2-methyl-1-propanesulfonic acid, 99%; 2-Acryloylamido-2-methylpropanesulfonic acid monomer; 2-methyl-2-(prop-2-enamido)propane-1-sulfonic acid; I09-2062; 2-(Acryloylamino)-2-methyl-1-propanesulfonic acid #; POLY(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID) (10% AQ.); 1-PROPANESULFONIC ACID 2-METHYL-2-[(1-OXO-2-PROPEN-1-YL)AMINO]- HOMOPOLYMER1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propen-1-yl)amino)-, homopolymer; 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, homopolymer; 107240-62-0; 114705-58-7; 127889-32-1; 155380-40-8; 201849-71-0; 201849-72-1; 201849-73-2; 201849-74-3; 60474-89-7; 82989-71-7; 88528-38-5; 915281-03-7; InChI=1/C7H13NO4S/c1-4-6(9)8-7(2,3)5-13(10,11)12/h4H,1,5H2,2-3H3,(H,8,9)(H,10,11,12; Polyacrylates: Cyanoacrylate, Poly(methyl Methacrylate), 2-Acrylamido-2-Methylpropane Sulfonic Acid, Polyacrylamide; 2-Acrylamide-2-Methylpropanesulfonic Acid; 2-Acrylamido-2-methylpropane Sulfonic Acid; 2-Acrylamido-2-methylpropanesulfonic Acid; 2-Acrylamido-2-methyl-1-propane Sulfonic Acid;1-Propanesulfonicacid, 2-acrylamido-2-methyl-;1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-;2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid;AMPS;Acrylamidomethylpropanesulfonic Acid;TBAS-Q;tert-Butylacrylamidosulfonic Acid;ATBS; pure-2-acrylamido-2-methylpropanesulfonic acid; 2-Acrylamide-2-methylpropane sulfonic acid, N-t-butyl acrylamide sulfonic acid; 2-Acrylamido-2-methyl-1-propane sulfonic acid; 2-Acrylamido-2-methylpropanesulphonic acid; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propen-1-yl)amino]- [ACD/Index Name]; 2-(Acryloylamino)-2-methyl-1-propanesulfonic acid [ACD/IUPAC Name]; 2-(Acryloylamino)-2-methyl-1-propansulfonsäure [German] [ACD/IUPAC Name]; 2-(Acryloylamino)-2-methylpropane-1-sulfonic acid; 2-Acrylamido-2-methyl-1-propane sulfonic acid [Wiki]; 2-acrylamido-2-methyl-1-propanesulfonic acid; 2-acrylamido-2-methyl-1-propyl-sulfonic acid; Acide 2-(acryloylamino)-2-méthyl-1-propanesulfonique [French] [ACD/IUPAC Name]; UNII-490HQE5KI5; [15214-89-8]; 107240-62-0 [RN]; 114705-58-7 [RN]; 127889-32-1 [RN]; 15124-89-8 [RN]; 15214-89-8 [RN]; 155380-40-8 [RN]; 1-Propanesulfonic acid, 2-acrylamido-2-methyl-; 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-; 201849-71-0 [RN]; 201849-72-1 [RN]; 201849-73-2 [RN]; 201849-74-3 [RN]; 239-268-0 [EINECS]; 27119-07-9 [RN]; 2-Acrylamide-2-methylpropanesulfonic acid; 2-acrylamide-2-methylpropanesulfonicacid; 2-acrylamido-2-methyl propane sulfonic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid, 8CI; 2-acrylamido-2-methylpropane sulfonic acid; 2-acrylamido-2-methylpropane-1-sulfonic acid; 2-acrylamido-2-methyl-propane-1-sulfonic acid; 2-Acrylamido-2-methylpropanesulfonate; 2-acrylamido-2-methyl-propanesulfonic acid; 2-Acrylamido-2-methylpropanesulfonic acid; 2-Acryloylamido-2-methylpropanesulfonic acid; 2-methyl-2-(1-oxoprop-2-enylamino)-1-propanesulfonate; 2-methyl-2-(1-oxoprop-2-enylamino)propane-1-sulfonic acid; 2-methyl-2-(prop-2-enamido)propane-1-sulfonic acid; 2-methyl-2-(prop-2-enoylamino)propane-1-sulfonic acid; 2-methyl-2-(prop-2-enoylamino)propanesulfonic acid; 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; 5165-97-9 [RN]; 52825-28-2 [RN]; 60474-89-7 [RN]; 82989-71-7 [RN]; 88528-38-5 [RN]; AMPS; EINECS 239-268-0; MFCD00007522 [MDL number]; NCGC00163969-01ST5307457; T5SJ B1 C1 DVQ E- AT5NJ [WLN]; TZ 6658000; UNII:490HQE5KI5; 1-Propanesulfonicacid, 2-acrylamido-2-methyl- (8CI);1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-(9CI);2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid;AMPS(sulfonic acid);Acrylamidomethylpropanesulfonic acid;TBAS-Q;tert-Butylacrylamidosulfonic acid; 2-Acylamido-2-Methylpropane Sulfonic Acid; nanogels; corrosion inhibitors; Amphiphile; Particles; Thin film; Coatings; 2-Acryloylamino-2-Methyl-1-Pro; Lubrizol AMPS; AMPS; TBAS-Q; 2-Acrylamide-2-methy; 2-Acrylamido-2-methylpropane-1-sulfonic acid; AMPS MONOMER; 2-Acrylamido-2-methylpropane-1-sulphonic acid; ACRYLAMIDO BUFFER PK 1; 2-Acrylamido-2-methylpropanesulfonic Acid; 2-acrylamido-2-methylpropane sulfonic acid ; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propen-1-yl)amino]-; Layer by layer, chitosan, cotton, antibacterial; Acrylamide Tertiary Butyl Sulfonic Acid; Acrylamide/2-acrylamido-2-methylpropane sulfonic acid ; 2-Acrylamide-2-Methylpropanesulfonic Acid AMPS CAS 15214-89-8; 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; AMPS; acrylamide-(2-acrylamido-2-methylpropanesulfonic acid); 2-Acrylamide-2-methyl-1-propanesulfonic acid-N,N-dimethylacrylamide copolymer; N-Acetyl-1-Aspartylglutamic Acid, Naag, Spaglumic Acid, N-Acetyl-Aspartyl-Glutamate [Glutamate-3,4-3H], N-Acetyl-L-?-Aspartyl-L-Glutamic Acid, ?-S; Preparation and property of 2-acrylamide-2-methylpropanesulfonic acid/acrylamide/sodium styrene sulfonate; POLİAKRİLAMİNOMETİLPROPAN SULFONİK ASİT; POLİ AKRİLAT AMİNO METİL PROPAN SÜLFONİK ASİY;POLI AKRILAT AMINO METIL PROPAN SULFONIK ASIT; poli akrilat amino metil propan sulfonık asıt; poly akrılat amıno metıl sulfonık asıt ;

 

 


Erime noktası: 195-200 ° C (dec.) (Lit.)
Yoğunluk 1.45
Parlama noktası: 160 ° C
saklama derecesi. 2-8 ° C
çözünürlük> 500 g / l çözünür
form çözümü
Beyaz renk
Suda Çözünürlük 1500 g / L (20 ºC)
Hassas Higroskopik

 

Özet

Akrilamid (AM) ve 2-akrilamido-2-metil-1-propan sülfonik asidin (AMPS) kopolimeri, başlatıcı olarak potasyum persülfat ile radikal çözelti polimerizasyonu yoluyla sentezlendi. AMPS besleme oranını% 10 ila% 70 arasında değiştirerek ve diğer reaksiyon koşullarını sabit tutarak farklı kopolimerler sentezlendi. Fonksiyonel grupların tanımlanması ve kopolimerlerin yapısının doğrulanması için Fourier transform infrared (FTIR) ve nükleer manyetik rezonans (1H-13C-NMR) spektroskopisi teknikleri kullanıldı. Numunelerin içsel ve görünür viskozitesi, standart koşullar altında sulu sodyum klorür çözeltisi içinde ölçüldü. Anyonik kopolimerlerin derecesi, arka titrasyon yöntemi ve 13C-NMR spektroskopisi ile belirlenmiştir. Kopolimerlerin moleküler ağırlığı Mark-Houwink ilişkisi ile belirlendi. Numunelerin ölçülen moleküler ağırlığı, yüksek moleküler ağırlıklı bir ürün elde ettiğimizi gösterdi. Farklı aralıktaki makaslama oranlarının çözelti viskozitesi üzerindeki etkisi değerlendirildi. Kopolimer çözeltileri, Newtonian olmayan kesme eğilme davranışını gösterdi. Kopolimerlerin kesme dayanımı ve moleküler ağırlığına göre performansı, endüstri uygulama açısından değerlendirilmiştir.

 

Giriş

Son yıllarda, suda çözünebilir polimerlere özel önem verilmiştir. Bu polimerlerin yüksek su çözünürlüğü, kolay ve ucuz sentetik yol, kesme dayanımı davranışı ve polimer yapısının kimyasal stabilitesi gibi teknolojik uygulamaları için en önemli gereklilikler makul bir şekilde göze çarpmaktadır. Suda çözünür polimerler arasında, akrilamid bazlı kopolimerler ve homopolimerler, çeşitli uygulamalara çok çeşitli işlevsellikler ve yararlar sağlar.

Akrilamid bazlı polimerler, yoğunlaştırılmış yağ geri kazanımı için genellikle koyulaştırıcılar, stabilizatörler, film oluşturucular, reoloji modifiye ediciler, emülsifiye ediciler, kayganlaştırıcı yardımcı maddeler, yumuşatıcılar ve viskozite kontrol maddeleri olarak kullanılır. Bu polimerlerin çoğu uygulaması, özellikle sulu bir ortamın reolojisini değiştirme kabiliyetleri bakımından, çözeltideki özelliklerinden kaynaklanmaktadır. Polimer molekülleri, hidrodinamik hacminin bir sonucu olarak viskoziteyi artıracaktır ve viskozite moleküller arası ilişki yoluyla daha da arttırılabilir. Hareketlilik kontrol ajanları için ideal polimer adayları, sıcaklık ve tuzluluk rezervuar koşulları altında uzun vadeli termal stabiliteye sahip olmalıdır. Dahası, maliyet-etkin olmalıdırlar.

Birçok sentetik suda çözünebilir polimer test edilmiştir, ancak çoğu çalışma, mevcudiyetleri ve nispeten düşük maliyeti nedeniyle poliakrilamid- (PAM-) bazlı polimerlere odaklanmıştır. Sürfaktan-polimer ve polimer-arttırılmış su taşma işlemlerinde en iyi hareketlilik kontrol maddeleri, poliakrilamidler, özellikle kısmen hidrolize poliakrilamid gibi geleneksel polimerlerdir, fakat yüksek-yoğunluklu tuzlu su sıvıları ile yüksek sıcaklık rezervuarları (> 90 ° C) için uygun değildir. . Poliakrilamiddeki fonksiyonel amid grubu 80-90 ° C'de hidrolize edilir. Polimer çözeltisi, sert tuzluluk ve sıcaklık koşullarında kararlı olmalıdır. Akrilamid bazlı polimerler, hızlı hidrolizleri, kolay termal bozunması ve istenmeyen özellikler gibi bazı eksikliklerden muzdariptir. Bu problemlerin üstesinden gelmek için, 2-akrilamido-2-metil-1-propan sülfonik asit (AMPS) içeren bazı vinil kopolimerleri geliştirilmiştir. Akrilamid kopolimerleri, özellikle AMPS, sülfonatlı komono-iyonları ile, sulu çözelti içinde hidrojen bağlama yeteneği ve polielektrolit davranışı sunar. Bu nedenle, sülfonat grupları içeren polimerlerin, çözelti içinde daha yüksek stabilite sunmaları ve yüksek tuz etkisine karşı tolerans göstermeleri beklenir. Test için uygun aday AM bazlı kopolimerler, AM'nin başka bir vinil tipi monomerle veya poliakrilamidin kendisinin kimyasal modifikasyonuyla kopolimerizasyonuyla hazırlanabilir.

Bu çalışmanın amacı, suda çözünebilen akrilmit bazlı anyonik kopolimerleri sentezlemek ve kopolimerlerin kesme dayanımı ve endüstriyel uygulama açısından moleküler ağırlığa göre performansını araştırmaktı.

Melting point:195-200 °C (dec.)(lit.)
Density 1.45
Flash point:160 °C
storage temp. 2-8°C
solubility >500g/l soluble
form solution
color White
Water Solubility 1500 g/L (20 ºC)
Sensitive Hygroscopic

 


Abstract

The copolymer of acrylamide (AM) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) was synthesized through radical solution polymerization by potassium persulfate as initiator. By changing the AMPS feed ratio from 10 to 70%, and keeping other reaction conditions constant, different copolymers were synthesized. The techniques of Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H- 13C-NMR) spectroscopy were used for identification of functional groups and confirmation of copolymers' structure. Intrinsic and apparent viscosity of samples were measured in aqueous sodium chloride solution under standard conditions. The anionic degree of copolymers was determined by back titration method and by 13C-NMR spectroscopy. Molecular weight of copolymers was determined by the Mark-Houwink relationship. The measured molecular weight of samples showed that we have acquired a high molecular weight product. The effect of different range of shear rates on solution viscosity was evaluated. The copolymer solutions showed non-Newtonian shear thinning behavior. The performance of copolymers with respect to shear resistance and molecular weight was evaluated from industry application standpoint.

Introduction

In recent years, special attention has been devoted to water soluble polymers. The most important requirements for technological applications of these polymers, such as high water solubility, easy and cheap synthetic route, shear resistance behavior, and chemical stability of the polymer structure, stand out plausibly. Among water-soluble polymers, acrylamide based copolymers and homopolymers provide a wide range of functionalities and benefits to a variety of applications.

Acrylamide based polymers are often used as thickeners, stabilizers, film formers, rheology modifiers, emulsifiers, lubricity aids, conditioners, and viscosity control agents for enhanced oil recovery . Most applications of these polymers arise from their properties in solution, especially for their ability to modify the rheology of an aqueous medium. Polymer molecules would increase the viscosity as a result of their hydrodynamic volume, and viscosity may be further enhanced through intermolecular association. The ideal polymer candidates for mobility control agents should have long-term thermal stability under the reservoir conditions of temperature and salinity. Moreover, they should be cost-effective.

Many synthetic water soluble polymers have been tested for, but most studies have focused on polyacrylamide- (PAM-) based polymers due to their availability and relatively low cost. The best mobility control agents in surfactant-polymer and polymer-augmented water flooding processes are conventional polymers such as polyacrylamides, especially partially hydrolyzed polyacrylamide, but they are not suitable for high-temperature reservoirs (>90°C) with high-density brine fluids. The functional amide group in polyacrylamide is hydrolyzed at 80-90°C . The polymer solution must be stable in harsh conditions of salinity and temperature. Acrylamide-based polymers suffer from some deficiencies such as their rapid hydrolysis, facile thermal degradation, and undesirable properties. To overcome these problems, some vinyl copolymers containing 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) have been developed. Copolymers of acrylamide with sulfonated comono-mers, especially AMPS, offer hydrogen bonding capability and polyelectrolyte behaviour in aqueous solution. Therefore, polymers containing sulfonate groups are expected to offer higher stability in solution and can be tolerant to the action of high salt. Candidate AM-based copolymers suitable for testing can be prepared by copolymerization of AM with another vinyl-type monomers or by the chemical modification of polyacrylamide itself.

The aim of this study was to synthesize water soluble acrylmide-based anionic copolymers and to investigate the performance of copolymers with respect to shear resistance and molecular weight from industry application standpoint.

 

 

Acar Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.