1-9 A-D E-G H-M N-P Q-S T-Z

GLYOXAL


GLYOXAL

CAS NUMBER: 107-22-2
EC NUMBER: 203-474-9

 

GLYOXAL; Ethanedial; 107-22-2; Oxalaldehyde; oxaldehyde; 1,2-Ethanedione; Glyoxylaldehyde;Diformyl; Biformal; Biformyl; Diformal; Aerotex glyoxal 40; Glyoxal aldehyde; Ethanedial, trimer; Ethanediol, trimer; Glyoxal, 40%; Glyoxal solution; Glyoxal solutions; CCRIS 952; UNII-50NP6JJ975; Ethane-1,2-dione; C2H2O2; HSDB 497; Glyoxal, 29.2%; EINECS 203-474-9; Glyoxal, 40% in water; BRN 1732463; AI3-24108; CHEBI:34779; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; Ethane-1,2-dione; C2H2O2; HSDB 497; Glyoxal, 29.2%; EINECS 203-474-9; Glyoxal, 40% in water; BRN 1732463; AI3-24108; CHEBI:34779; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; MFCD00006957; NCGC00091228-01; DSSTox_CID_5364; DSSTox_RID_77764; DSSTox_GSID_25364; 40094-65-3; Ethanedione; CAS-107-22-2; Glyoxal solution, ~40% in H2O (~8.8 M); bisformyl; oxypolygelatine; Gelifundol; Oxypolygelatin; Ethandial; Glycoxal; Glyfosfin; ethane dial; (oxo)acetaldehyde; ethane-1,2-dial; Protectol GL 40; ODIX; NSC 262684; AC1L1PPU; ACMC-1BV6U; Glyoxal, 40 % Solution; Glyoxal solution, 40.0%; 4-01-00-03625 (Beilstein Handbook Reference); BIDD:ER0284; (CHO)2; AC1Q28J9; Glyoxal, Biformyl, Oxalaldehyde; CHEMBL1606435; DTXSID5025364; CTK0H4953; Glyoxal, 40% w/w aq. soln.; MolPort-001-780-154; 50NP6JJ975; BB_SC-7204; ZINC8437750; Tox21_111105; Tox21_202517; NW-43524; BBL011519; LS-36; NSC262684; STL146635; AKOS000119169; Glyoxal solution, 40 wt. % in H2O; MCULE-3212938778; NSC-262684; RP18241; RTR-001406; TRA0067179; KS-00000V42; GLYOXAL, 76%, POWDER (TRIMER); NCGC00260066-01; AN-22473; KB-52297; OR034237; OR369233; SC-19118; Glyoxal solution, CP, 40 wt. % in H2O; TR-001406; FT-0626792; G0152; X8004; Glioxaldehit; etandial, 1,2-Etandiol; Diformil; Etandione; Glioxal aldehit; C14448; Glyoxal solution, 40 wt. % in water 100ml; 57421-EP2269977A2; 57421-EP2270006A1; 57421-EP2289896A1; 57421-EP2308878A2; 57421-EP2377845A1; Gelatins, reaction products with glyoxal, oxidized; J-001740; S14-1487; F2191-0152; Glyoxal solution, ~40% in H2O, for HPLC derivatization; Glyoxal solution, BioReagent, for molecular biology, ~40% in H2O (~8.8 M); 83513-30-8; 9005-91-8; Ethanedial; Ethanedione; Glyoxal; 40094-65-3; 1162; 262684; MD2700000; 2810; 50NP6JJ975; Oxaldehyde; InChI=1S/C2H2O2/c3-1-2-4/h1-2H; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; C(=O)C=O; OHCCHO; 1,2-Ethanedione; Diformal; ethandial; Ethanedial; Ethanedione; MFCD00006957; Oxalaldehyd; Oxalaldehyde; GXT; ODIX; oxal; Protectol GL 40; trans-glyoxal; UNII:50NP6JJ975; EDO; Gelifundol; gliksol; glioksal; gilioksal; gilioxal; glioxal; glyoksal; glyoxale; glioksale; glyoxal; ODIX; Oxal; (CHO)2; GLYOXA; GLYOXAL; DIFORMYL; Biformal; Biformyl; Diformal; GLYOXALE; CB1280241; InChIKeyLEQAOMBKQFMDFZ-UHFFFAOYSA-N; NIST Chemistry Reference; Ethanedial(107-22-2); Glyoxal; (Ethanedione, 1, 2-) (107-22-2); AEROTEX GLYOXAL 40; BIFORMAL; BIFORMYL; DAICEL GY 60; DIFORMAL; DIFORMYL; ETHANDIAL; ETHANEDIAL; ETHANEDIOL; ETHANEDIONE; 1,2-ETHANEDIONE; GLYFIX CS 50; GLYOXAL; GLYOXAL ALDEHYDE; GLYOXAL, 40% SOLUTION; GLYOXYLALDEHYDE; GOHSEZAL P; OXAL; OXALALDEHYDE; OXALDEHYDE; PERMAFRESH 114; MFCD00006957; Biformyl; Ethanedial; 1,2-Ethanedione; Oxalaldehyde; Ethanedial; Biformal; Biformyl; Diformyl; Ethanedione; Glyoxal aldehyde; Glyoxylaldehyde; Oxal; Oxalaldehyde; 1,2-Ethanedione; (CHO)2; Diformal; Ethane-1,2-dione; Ethandial; Aerotex glyoxal 40; ODIX; Protectol GL 40; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; GLYOXAL; 1,2-ETHANEDIONE; ETHANEDIAL; DIFORMYL; BIFORMYL; OXALDEHYDE; Ethanedial; oxalaldehyde; Glyoxal, 40 % Solution; 83513-30-8; 50NP6JJ975; 1732463; MFCD00006957; 58.03634000; diformal; ethandial; ethane dial; ethane-1,2-dial; ethanedial; ethanedione; 1,2-ethanedione; gelifundol; glyoxal aldehyde; glyoxylaldehyde; oxalaldehyde; oxaldehyde; Glyoxaldehyde; Ethanedial; 1,2-Ethanedione; Diformyl; Ethanedione; Glyoxal aldehyde; 1,2-Ethanedione; Biformyl; Ethanedial; Oxalaldehyde; C2H2O2 / OHCCHO; Molecular mass: 58.0; ICSC # 1162; Glyoxal, 40 wt% solution in water; AC156220000; AC156220010, AC156220025; AC156220050; AC156225000; BP1370-500; Biformal; Diformal; Ethandial; Glyoxylaldehyde; 231-791-2; 203-474-9; 7732-18-5; ZC0110000; 107-22-2;MD2625000; MD2650000; MD2700000; 7-(2-Hydroxyethyl)decahydro-1H,6H-3a,5a,8a,10a-tetraazapyrene; 1435472-42-6

 

 

GENEL TANIM

15 ° C`de eriyen sarı kristallerdir. Bu nedenle sıklıkla zayıf bir ekşi kokuya sahip açık sarı bir sıvı olarak karşılaşılır. Glyoxal, Buharın yeşil bir rengi vardır ve mor bir alevle yanar. Glyoxal, Yanıcıdır. Güçlü oksitleyici ajanlarla uyuşmaz. Glyoxal, Güçlü indirgeyicidir. Egzotermik olarak polimerize olabilir. Hava, su, oksijen, peroksitler, amidler, aminler, hidroksi içeren maddeler, nitrik asit, aldehitlerle uyuşmaz. Glyoxal, Birçok metali korozif hale getirir.


HAREKET MEKANİZMASI

Glyoxal, proteinleri, nükleotidleri ve lipidlerin amino gruplarına yüksek oranda reaktif karbonil gruplarıyla saldırır. Glikasyon denilen enzimatik olmayan reaksiyonlardan oluşan bir dizi, DNA`da linyin ve arginin artıklarını ve DNA`da 1.0 x 10-7 nükleotidde 1`lik bir arka plan kapsamı ile kararlı ilerlemiş glikasyon son ürünler (AGE`ler) üretir. ... Glyoksal, Guanin`in ekzosiklik azotunun yanı sıra N-1 ile reaksiyona girerek guanozin ile kararlı adüktler oluşturur. Glioksal-guanin adükt oluşumu fizyolojik koşullar altında hızlıdır. Stabil bir trisiklik glioksal-DNA adüktü, in vitro fizyolojik koşullar altında iki guanin azotuna kovalent bağlanma yoluyla oluşur. 8-hidroksi-deoksiguanozin yanı sıra, glioksal-deoksiguanozin (dG) adükt, oksijen radikalleri, lipit peroksidasyon sistemleri, çeşitli oksidatif stres tipleri ve UV ışınlaması ile ve in vivo beta maruziyetinden sonra oluşmakta olan önemli deoksiguanozin oksidasyon ürünlerinden biridir -hidroksi-ikameli N-nitrosaminler.

Glyoxal, gelişmiş glikasyon son ürünler (AGE`ler) oluşumunda önemli bir ara ürün olarak düşünülür. AGE modifikasyonu protein fonksiyonunu değiştirir ve enzimleri inaktive eder, bu da hücresel metabolizma bozukluğuna, bozulmuş proteolize ve hücre proliferasyonunun ve protein sentezinin inhibisyonuna neden olur. AGE modifikasyonunun derecesi, proteinlerin ömrünün uzamasına bağlı olarak artmaktadır. Sonuç olarak, AGE`ler özellikle kollajen, mercek kristalinleri ve nörofilamentler gibi uzun ömürlü proteinlerle ilişkilidir ancak aynı zamanda hemoglobin, plazma proteinleri, lipoproteinler ve hücre içi proteinler de dahil olmak üzere daha kısa süren proteinlerde tanımlanmıştır.


Bakteriyel mutajenite testlerinde yapılan inhibisyon çalışmaları, glioksaldan süperoksit, hidrojen peroksit ve singlet oksijen üretildiğini göstermiştir. Glioksalın mutajenik aktivitesi, singlet oksijene ve hücre içi GSH seviyesine ilişkindir. Hidroksil radikali glioksal kaynaklı DNA bölünmesinde belirgin bir rol oynamaktadır.

İzole edilmiş sıçan hepatositleri farklı glıkoksal konsantrasyonları ile inkübe edildi. Glyoxal tek başına 5 mM`de sitotoksik, tükenmiş GSH, reaktif oksijen türleri (ROS) oluşturdu ve mitokondriyal membran potansiyelini çökertti. Glyoksal aynı zamanda lipit peroksidasyonu ve formaldehit oluşumuna neden olmuştur. Glikolitik substratlar, örneğin fruktoz, sorbitol ve ksilitol glioksal kaynaklı sitotoksisiteyi inhibe etti ve mitokondriyal membran potansiyelindeki azalmayı önledi, mitokondriyal toksisitenin sitotoksik mekanizmaya katkıda bulunduğunu düşündürdü. Glioksal sitotoksisite, glioksal tuzaklar d-penisilamin veya aminoguanidin ile engellendi veya ROS atıcılar, glioksal sonrası bir süre ilave edildiklerinde bile sitoprotektifti; oksidatif stresin glioksal sitotoksik mekanizmaya katkıda bulunduğunu düşündürdü.

Sitozolik GSH`ye bağlı glioksalaz sistemi, glioksalın detoksifikasyonunun başlıca yoludur. Glikoksal, gliokzalaz I ile daha sonra S-glikolglutatiyona dönüştürülen bir hemitiyoasetal oluşumu ile enzimatik olmayan şekilde GSH ile tepkimeye girer. Glikozalaz II, hidrolizini katalize eder S-glikolglutatyonun glikolata dönüştürülmesi, ilk reaksiyondan GSH`nin yeniden oluşturulması. Gloksalaz I in in situ aktivitesi, GSH`nin sitozolik konsantrasyonu ile yaklaşık olarak orantılıdır. GSH şiddetle tükendiğinde (örneğin, oksidatif stres koşulları altında), 2-oksoaldehid dehidrojenaz ve aldoz redüktaz da glioksal metabolize edebilir. Hücre içi redoks sistemindeki dengesizlikler bu detoksifikasyon mekanizmalarını bozabilir ve bu da glioksal düzeyinin yükselmesine neden olabilir. Glyokzalaz III yoluyla GSH`den bağımsız bir başka detoksifikasyon yolu mevcuttur.


KULLANIM VE İMALAT

Dolgu
Ara ürünler
Koku maddeleri
İşleme yardımcıları
Katı ayırma maddeleri
Su Arıtma Ürünleri

Çok yönlü özellikleri ara glioksal, çeşitli uygulamalar için tercih edilen üründür. Örneğin, tekstil imalatında, bu verimli çapraz bağlayıcı, çapraz bağlayıcı selülozdaki su alımı miktarını düşürür. Yağ geri kazanımında, glioksal, polimerleri çapraz bağlar ve böylece kırık akışkanların viskozitesini arttırır.

Glyoxal kağıt, deri ve epoksi endüstrilerinde de kullanılır. Bilinen uygulamaların yanında, glioksal, gelişimin erken evrelerinde olan yeni uygulamalar için potansiyel göstermektedir. İlaçların, yapıştırıcılar ve kaplayıcıların, tekstil reçinelerinin ve tekstil reaktan ürünlerin üretiminde, kağıt reçinelerinin üretiminde ve of set-özel kaplama banyolarında kullanılır. Çapraz bağlayıcıların üretiminde ara madde olarak kullanılır. Örneğin; kopolimerlerin üretimi, boya ara maddeleri, ilaçlar, mahsül (ürün) koruma ajanları, böcek ilaçları, kağıt, tekstil ve deri yardımcıları, korozyon önleyiciler ve fotoğraf kimyasalları için kullanılır. Organik sentezlerde (tıbbi ürünler, boya maddeleri vs...), ev ve hastane dezenfeksiyonu biositlerinde, çeşitli muhteliflerin kullanımı, çeşitli doldurucuların yığınlanması ve mineral doldurucu muamelesinde, selüloz eterlerinin yumrulaşma karşıtı işlenmesinde ve hava koku giderici ajanlarda kullanılır. Ayrıca hidrokolloidlerin üretimi, epoksi ve fenolik reçinelerin üretiminde ve tütün katkısı olarak da kullanılmaktadır.

 

 

 

  


GENERAL DESCRIPTION

Yellow crystals melting at15°C. Hence often encountered as a light yellow liquid with a weak sour odor. GLYOXAL is a 2-carbon aldehyde with carbonyl groups on both carbons.GLYOXAL is a yellow crystals melting at15°C. Hence often encountered as a light yellow liquid with a weak sour odor. Vapor has a green color and burns with a violet flame.

Combustible. Incompatible with strong oxidizing agents. Strong reducingagent. May polyermize exothermically. Incompatible with air, water, oxygen,peroxides, amides, amines, hydroxy-containing material s, nitric acid, aldehydes. Corrodes many metals.


Mechanism of Action

Glyoxal attacks the amino groups of proteins, nucleotides, and lipids with its highly reactive carbonyl groups. A sequence of non-enzymatic reactions, called glycation, yields stable advanced glycation end-products (AGEs) with a background extent of 0.1-1% of lysine and arginine residues in proteins and 1 in 1.0 X 10-7 nucleotides in DNA. ... Glyoxal forms stable adducts with guanosine by reaction with the N-1 as well as with the exocyclic nitrogen of guanine. The rate of glyoxal-guanine adduct formation is rapid under physiological conditions. A stable tricyclic glyoxal-DNA adduct is formed by covalent binding to two nitrogens of guanine under physiological conditions in vitro. Besides 8-hydroxy-deoxyguanosine, the glyoxal-deoxyguanosine (dG) adduct is one of the major deoxyguanosine oxidation products, being formed by oxygen radicals, lipid peroxidation systems, various types of oxidative stress, and UV irradiation and after in vivo exposure to beta-hydroxy-substituted N-nitrosamines.

Glyoxal (O=CH-CH=O) is an α-oxoaldehyde, and it is often grouped with two similar α-oxoaldehydes, methylglyoxal, and 3-deoxyglucosone. All three compounds are products of various metabolic and oxidative reactions and are capable of causing cellular damage and apoptosis. They are also involved in the formation of advanced glycation end-products (AGEs) which have been linked to long-term sequela of chronic diseases such as diabetic retinopathy, neuropathy, and nephropathy. Glyoxal is primarily detoxified by the glyoxalase system present in the cells of bacteria, protozoa, fungi, plants, animals, and humans. However, it has been suggested that several other enzymes are capable of detoxifying glyoxal, including aldehyde dehydrogenase (ALDH) which can oxidize glyoxal to glyoxylate.

Glyoxal is considered an important intermediate in the formation of advanced glycation end-products (AGEs). AGE modification alters protein function and inactivates enzymes, resulting in disturbance of cellular metabolism, impaired proteolysis, and inhibition of cell proliferation and protein synthesis. The extent of AGE modification increases with the increasing life span of proteins. Consequently, AGEs are especially associated with long-lived proteins, such as collagens, lens crystallins, and neurofilaments, but also have been identified in shorter-lived proteins, including hemoglobin, plasma proteins, lipoproteins, and intracellular proteins.

Inhibition studies in bacterial mutagenicity tests demonstrated the production of the reactive oxygen species superoxide, hydrogen peroxide, and singlet oxygen from glyoxal. The mutagenic activity of glyoxal is related to singlet oxygen, as well as to the intracellular GSH level. The hydroxyl radical plays a prominent role in glyoxal-induced DNA cleavage.

Isolated rat hepatocytes were incubated with different concentrations of glyoxal. Glyoxal by itself was cytotoxic at 5mM, depleted GSH, formed reactive oxygen species (ROS) and collapsed the mitochondrial membrane potential. Glyoxal also induced lipid peroxidation and formaldehyde formation. Glycolytic substrates, eg fructose, sorbitol and xylitol inhibited glyoxal-induced cytotoxicity and prevented the decrease in mitochondrial membrane potential suggesting that mitochondrial toxicity contributed to the cytotoxic mechanism. Glyoxal cytotoxicity was prevented by the glyoxal traps d-penicillamine or aminoguanidine or ROS scavengers were also cytoprotective even when added some time after glyoxal suggesting that oxidative stress contributed to the glyoxal cytotoxic mechanism.

The cytosolic GSH-dependent glyoxalase system is the major pathway for the detoxification of glyoxal ... Glyoxal reacts non-enzymatically with GSH with formation of a hemithioacetal, which is subsequently converted to S-glycolylglutathione by glyoxalase I. Glyoxalase II catalyses the hydrolysis of S-glycolylglutathione to glycolate, re-forming the GSH from the first reaction. The activity of glyoxalase I in situ is approximately proportional to the cytosolic concentration of GSH. When GSH is severely depleted (eg, under conditions of oxidative stress), however, 2-oxoaldehyde dehydrogenase and aldose reductase may also metabolize glyoxal. Imbalances in intracellular redox systems may impair these detoxification mechanisms, resulting in higher levels of glyoxal. A further GSH-independent route of detoxification via glyoxalase III exists.


Use and Manufacturing

Fillers
Intermediates
Odor agents
Processing aids, not otherwise listed
Solids separation agents
Water Treatment Products

Its versatile properties the intermediate glyoxal is the product of choice for various applications. In textile manufacturing, for example, this efficient crosslinker decreases water uptake in crosslinking cellulose. In oil recovery, glyoxal crosslinks polymers, thus increasing the viscosity of fracturing fluids.

Glyoxal is also used in the paper, leather and epoxy industries. Beside known applications, glyoxal shows potential for new applications which are still in the early stages of development.

Acar Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.